Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6932, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907470

RESUMO

Recent experiments demonstrated that proton transport through graphene electrodes can be accelerated by over an order of magnitude with low intensity illumination. Here we show that this photo-effect can be suppressed for a tuneable fraction of the infra-red spectrum by applying a voltage bias. Using photocurrent measurements and Raman spectroscopy, we show that such fraction can be selected by tuning the Fermi energy of electrons in graphene with a bias, a phenomenon controlled by Pauli blocking of photo-excited electrons. These findings demonstrate a dependence between graphene's electronic and proton transport properties and provide fundamental insights into molecularly thin electrode-electrolyte interfaces and their interaction with light.

2.
Exp Brain Res ; 241(11-12): 2669-2682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796301

RESUMO

Entry motion sickness (EMS) affects crewmembers upon return to Earth following extended adaptation to microgravity. Anticholinergic pharmaceuticals (e.g., Meclizine) are often taken prior to landing; however, they have operationally adverse side effects (e.g., drowsiness). There is a need to develop non-pharmaceutical countermeasures to EMS. We assessed the efficacy of a technological countermeasure providing external visual cues following splashdown, where otherwise only nauseogenic internal cabin visual references are available. Our countermeasure provided motion-congruent visual cues of an Earth-fixed scene in virtual reality, which was compared to a control condition with a head-fixed fixation point in virtual reality in a between-subject design with 15 subjects in each group. We tested the countermeasure's effectiveness at mitigating motion sickness symptoms at the end of a ground-based reentry analog: approximately 1 h of 2Gx centrifugation followed by up to 1 h of wave-like motion. Secondarily, we explored differences in vestibular-mediated balance performance between the two conditions. While Motion Sickness Questionnaire outcomes did not differ detectably between groups, we found significantly better survival rates (with dropout dictated by reporting moderate nausea consecutively over 2 min) in the visual countermeasure group than the control group (79% survival vs. 33%, t(14) = 2.50, p = 0.027). Following the reentry analogs, subjects demonstrated significantly higher sway prior to recovery (p = 0.0004), which did not differ between control and countermeasure groups. These results imply that providing motion-congruent visual cues may be an effective mean for curbing the development of moderate nausea and increasing comfort following future space missions.


Assuntos
Enjoo devido ao Movimento , Voo Espacial , Realidade Virtual , Humanos , Astronautas , Enjoo devido ao Movimento em Voo Espacial/tratamento farmacológico , Náusea/etiologia
3.
Stomatologiia (Mosk) ; 102(4): 22-26, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37622296

RESUMO

THE AIM OF THE STUDY: To evaluate the change in the level of concentration of the antibacterial drug Vancomycin registered in the purulent focus area (facial vein) and in the peripheral blood flow (cubital vein) in patients with phlegmon of the maxillofacial region (MFR). MATERIALS AND METHODS: The clinical material of the study was 12 patients with phlegmon of MFR who were being treated in the maxillofacial department of the N.I. Pirogov State Clinical Hospital No. 1 of the Moscow Medical Center. The drainage of phlegmons was performed on the day of admission of the patient 2-3 days after the onset of the disease. The phlegmons involved two or more spaces of the MFR. As an antimicrobial drug, 500 mg of Vancomycin in 400 ml of saline solution was used intravenously. Quantitative registration of Vancomycin was carried out 2 hours after intravenous infusion. Blood sampling was carried out from the cubital and facial veins in an amount of 7-8 ml intraoperatively at the opening of the phlegmon, under endotracheal anesthesia. The concentration of the antibiotic was determined by high-performance liquid crystal chromatography. RESULTS AND DISCUSSION: The study found that the concentration of Vancomycin in the facial vein exceeds similar indicators obtained from the cubital vein. The difference in the percentage ratio averaged 19.2±7.3%. In 10 patients with phlegmons of various localization, it was found that the penetration of the antibacterial drug into the tissues of the inflammatory focus is higher compared to the periphery. However, in a number of patients, the concentration of the drug did not exceed the minimum suppressive concentration recommended for obtaining a therapeutic effect (for Vancomycin, it is at least 2 mcg / ml). CONCLUSION: To achieve the therapeutic effect of phlegmon treatment, it is necessary to select an individual dose of the drug for each patient.


Assuntos
Monitoramento de Medicamentos , Vancomicina , Humanos , Celulite (Flegmão)/tratamento farmacológico , Antibacterianos , Cabeça
4.
Stomatologiia (Mosk) ; 102(1): 73-77, 2023.
Artigo em Russo | MEDLINE | ID: mdl-36800790

RESUMO

The article focuses on the clinical manifestation of inflammatory and destructive lesions of the bones of the midface, nose and paranasal sinuses as a long-term complication of COVID-19 with clinical examples provided.


Assuntos
COVID-19 , Osteonecrose , Humanos , COVID-19/complicações , Face , Necrose , Ossos Faciais
5.
Nat Commun ; 12(1): 854, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558559

RESUMO

Large optical anisotropy observed in a broad spectral range is of paramount importance for efficient light manipulation in countless devices. Although a giant anisotropy has been recently observed in the mid-infrared wavelength range, for visible and near-infrared spectral intervals, the problem remains acute with the highest reported birefringence values of 0.8 in BaTiS3 and h-BN crystals. This issue inspired an intensive search for giant optical anisotropy among natural and artificial materials. Here, we demonstrate that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Waals interaction. To do this, we made correlative far- and near-field characterizations validated by first-principle calculations that reveal a huge birefringence of 1.5 in the infrared and 3 in the visible light for MoS2. Our findings demonstrate that this remarkable anisotropy allows for tackling the diffraction limit enabling an avenue for on-chip next-generation photonics.

6.
Vestn Otorinolaringol ; 84(5): 44-47, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31793526

RESUMO

The article discusses the issues of diagnosis, the clinical course of osteonecrosis of the upper jaw in patients with oncological diseases. The assessment of radiological indicators of bone pathology of the upper jaw, signs of the development of the inflammatory process of the maxillary sinus and other sinuses of the nose. The experience of conservative tactics and surgical treatment of patients in this group is analyzed with the participation of specialists from otorhinolaryngologists and maxillofacial surgeons.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Humanos , Seio Maxilar , Tomografia Computadorizada por Raios X
7.
Sci Rep ; 9(1): 20286, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889053

RESUMO

Plasmonic biosensing has emerged as the most sensitive label-free technique to detect various molecular species in solutions and has already proved crucial in drug discovery, food safety and studies of bio-reactions. This technique relies on surface plasmon resonances in ~50 nm metallic films and the possibility to functionalize the surface of the metal in order to achieve selectivity. At the same time, most metals corrode in bio-solutions, which reduces the quality factor and darkness of plasmonic resonances and thus the sensitivity. Furthermore, functionalization itself might have a detrimental effect on the quality of the surface, also reducing sensitivity. Here we demonstrate that the use of graphene and other layered materials for passivation and functionalization broadens the range of metals which can be used for plasmonic biosensing and increases the sensitivity by 3-4 orders of magnitude, as it guarantees stability of a metal in liquid and preserves the plasmonic resonances under biofunctionalization. We use this approach to detect low molecular weight HT-2 toxins (crucial for food safety), achieving phase sensitivity~0.5 fg/mL, three orders of magnitude higher than previously reported. This proves that layered materials provide a new platform for surface plasmon resonance biosensing, paving the way for compact biosensors for point of care testing.

8.
Nature ; 559(7713): 236-240, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995867

RESUMO

Controlled transport of water molecules through membranes and capillaries is important in areas as diverse as water purification and healthcare technologies1-7. Previous attempts to control water permeation through membranes (mainly polymeric ones) have concentrated on modulating the structure of the membrane and the physicochemical properties of its surface by varying the pH, temperature or ionic strength3,8. Electrical control over water transport is an attractive alternative; however, theory and simulations9-14 have often yielded conflicting results, from freezing of water molecules to melting of ice14-16 under an applied electric field. Here we report electrically controlled water permeation through micrometre-thick graphene oxide membranes17-21. Such membranes have previously been shown to exhibit ultrafast permeation of water17,22 and molecular sieving properties18,21, with the potential for industrial-scale production. To achieve electrical control over water permeation, we create conductive filaments in the graphene oxide membranes via controllable electrical breakdown. The electric field that concentrates around these current-carrying filaments ionizes water molecules inside graphene capillaries within the graphene oxide membranes, which impedes water transport. We thus demonstrate precise control of water permeation, from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies for artificial biological systems, tissue engineering and filtration.

9.
Chem Rev ; 118(12): 5912-5951, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29863344

RESUMO

When metal nanoparticles are arranged in an ordered array, they may scatter light to produce diffracted waves. If one of the diffracted waves then propagates in the plane of the array, it may couple the localized plasmon resonances associated with individual nanoparticles together, leading to an exciting phenomenon, the drastic narrowing of plasmon resonances, down to 1-2 nm in spectral width. This presents a dramatic improvement compared to a typical single particle resonance line width of >80 nm. The very high quality factors of these diffractively coupled plasmon resonances, often referred to as plasmonic surface lattice resonances, and related effects have made this topic a very active and exciting field for fundamental research, and increasingly, these resonances have been investigated for their potential in the development of practical devices for communications, optoelectronics, photovoltaics, data storage, biosensing, and other applications. In the present review article, we describe the basic physical principles and properties of plasmonic surface lattice resonances: the width and quality of the resonances, singularities of the light phase, electric field enhancement, etc. We pay special attention to the conditions of their excitation in different experimental architectures by considering the following: in-plane and out-of-plane polarizations of the incident light, symmetric and asymmetric optical (refractive index) environments, the presence of substrate conductivity, and the presence of an active or magnetic medium. Finally, we review recent progress in applications of plasmonic surface lattice resonances in various fields.

10.
Nat Mater ; 16(12): 1198-1202, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29170556

RESUMO

Graphene oxide (GO) membranes continue to attract intense interest due to their unique molecular sieving properties combined with fast permeation. However, their use is limited to aqueous solutions because GO membranes appear impermeable to organic solvents, a phenomenon not yet fully understood. Here, we report efficient and fast filtration of organic solutions through GO laminates containing smooth two-dimensional (2D) capillaries made from large (10-20 µm) flakes. Without modification of sieving characteristics, these membranes can be made exceptionally thin, down to ∼10 nm, which translates into fast water and organic solvent permeation. We attribute organic solvent permeation and sieving properties to randomly distributed pinholes interconnected by short graphene channels with a width of 1 nm. With increasing membrane thickness, organic solvent permeation rates decay exponentially but water continues to permeate quickly, in agreement with previous reports. The potential of ultrathin GO laminates for organic solvent nanofiltration is demonstrated by showing >99.9% rejection of small molecular weight organic dyes dissolved in methanol. Our work significantly expands possibilities for the use of GO membranes in purification and filtration technologies.

11.
Nat Commun ; 7: 13590, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874003

RESUMO

Two-dimensional atomic heterostructures combined with metallic nanostructures allow one to realize strong light-matter interactions. Metallic nanostructures possess plasmonic resonances that can be modulated by graphene gating. In particular, spectrally narrow plasmon resonances potentially allow for very high graphene-enabled modulation depth. However, the modulation depths achieved with this approach have so far been low and the modulation wavelength range limited. Here we demonstrate a device in which a graphene/hexagonal boron nitride heterostructure is suspended over a gold nanostripe array. A gate voltage across these devices alters the location of the two-dimensional crystals, creating strong optical modulation of its reflection spectra at multiple wavelengths: in ultraviolet Fabry-Perot resonances, in visible and near-infrared diffraction-coupled plasmonic resonances and in the mid-infrared range of hexagonal boron nitride's upper Reststrahlen band. Devices can be extremely subwavelength in thickness and exhibit compact and truly broadband modulation of optical signals using heterostructures of two-dimensional materials.

12.
Bionanoscience ; 6(3): 235-242, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27774374

RESUMO

Superparamagnetic iron oxide (Fe3O4) and highly anisotropic barium hexaferrite (BaFe12O19) nanoparticles were coated with an anti-inflammatory drug and magnetically transported through mucus produced by primary human airway epithelial cells. Using wet planetary ball milling, dl-2-amino-3-phosphonopropionic acid-coated BaFe12O19 nano-particles (BaNPs) of 1-100 nm in diameter were prepared in water. BaNPs and conventional 20-30-nm Fe3O4 nanoparticles (FeNPs) were then encased in a polymer (PLGA) loaded with dexamethasone (Dex) and tagged for imaging. PLGA-Dex-coated BaNPs and FeNPs were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. Both PLGA-Dex-coated BaNPs and FeNPs were transferred to the surface of a ~100-µm thick mucus layer of air-liquid interface cultured primary normal human tracheobronchial epithelial (NHTE) cells. Within 30 min, the nanoparticles were pulled successfully through the mucus layer by a permanent neodymium magnet. The penetration time of the nanomedicine was monitored using confocal microscopy and tailored by varying the thickness of the PLGA-Dex coating around the particles.

13.
Artigo em Russo | MEDLINE | ID: mdl-28091506

RESUMO

AIM: Experimental verification of the hypothesis about the possible involvement of the mosaic genome variations (mosaic aneuploidy) in the pathogenesis of a number of mental illnesses, including schizophrenia and autism: a genetic study of the level of mosaic genome variations in cells of the brain autopsy tissues in healthy controls and schizophrenia. MATERIAL AND METHODS: Autopsy brain tissues of 15 unaffected controls and 15 patients with schizophrenia were analyzed by molecular cytogenetic methods to determine the frequency of chromosomal mutations (the mosaic aneuploidy) in neural human cells. The original collection of chromosome-enumeration DNA probes to autosomes 1, 9, 15, 16, 18 and the sex chromosomes X and Y was used for the interphase cytogenetic analysis of chromosomes in the cells of the brain. RESULTS AND CONCLUSION: The frequency of low-level aneuploidy per individual chromosome was 0.54% (median - 0.53%; 95% confidence interval (CI) CI - 0.41-1.13%) in controls and 1.66% (median - 1.55%; 95% CI -1.32-2.12%) in schizophrenia (p=0.000013). Thus, the three-fold increase in aneuploidy frequency in the brain in schizophrenia was detected. It is suggested that mosaic aneuploidy, as a significant biological marker of genomic instability, may lead to genеtic imbalance and abnormal functional activity of neural cells and neural networks in schizophrenia.


Assuntos
Aneuploidia , Encéfalo/patologia , Instabilidade Genômica , Mosaicismo , Esquizofrenia/genética , Autopsia , Estudos de Casos e Controles , Humanos , Hibridização in Situ Fluorescente , Neurônios , Software
14.
Opt Express ; 23(24): A1651-63, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26698811

RESUMO

Water splitting is unanimously recognized as environment friendly, potentially low cost and renewable energy solution based on the future hydrogen economy. Especially appealing is photocatalytic water splitting whereby a suitably chosen catalyst dramatically improves efficiency of the hydrogen production driven by direct sunlight and allows it to happen even at zero driving potential. Here, we suggest a new class of stable photocatalysts and the corresponding principle for catalytic water splitting in which infrared and visible light play the main role in producing the photocurrent and hydrogen. The new class of catalysts - ionic or covalent binary metals with layered graphite-like structures - effectively absorb visible and infrared light facilitating the reaction of water splitting, suppress the inverse reaction of ion recombination by separating ions due to internal electric fields existing near alternating layers, provide the sites for ion trapping of both polarities, and finally deliver the electrons and holes required to generate hydrogen and oxygen gases. As an example, we demonstrate conversion efficiency of ~27% at bias voltage Vbias = 0.5V for magnesium diboride working as a catalyst for photoinduced water splitting. We discuss its advantages over some existing materials and propose the underlying mechanism of photocatalytic water splitting by binary layered metals.

15.
Ukr Biochem J ; 87(2): 41-55, 2015.
Artigo em Ucraniano | MEDLINE | ID: mdl-26255338

RESUMO

Lipoxygenases are widespread plant enzymes that catalyze the peroxidation of polyunsaturated fatty acids. This reaction is pivotal in the enzymatic cascade that leads to production of numerous metabolism regulators named oxylipins. The activity of these biologically active substances is directly associated with defence reactions in conditions of biotic and abiotic stresses as well as with the regulation of plant growth, propagation and senescence. In this review the contemporary notions about lipoxygenases classification, structure and catalytic properties are summarized. The features of enzyme activity regulation by transcriptional and posttranslational mechanisms in addition to the role of lipoxygenase catalysis in plant cell signalling are discussed.


Assuntos
Regulação da Expressão Gênica de Plantas , Lipoxigenases/metabolismo , Oxilipinas/metabolismo , Células Vegetais/enzimologia , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Adaptação Fisiológica , Peroxidação de Lipídeos , Lipoxigenases/química , Lipoxigenases/genética , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Estresse Fisiológico , Transcrição Gênica
16.
Opt Express ; 23(2): 1265-75, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835885

RESUMO

The dense packing of two dimensional flakes by van der Waals forces has enabled the creation of new metamaterials with desirable optical properties. Here we assemble graphene oxide sheets into a three dimensional metamaterial using a microfluidic technique and confirm their ordering via measurements of ellipsometric parameters, polarized optical microscopy, polarized transmission spectroscopy, infrared spectroscopy and scanning electron microscopy. We show that the produced metamaterials demonstrate strong in-plane optical anisotropy (Δn≈0.3 at n≈1.5-1.8) combined with low absorption (k<0.1) and compare them with as-synthesized samples of graphene oxide paper. Our results pave the way for engineered birefringent metamaterials on the basis of two dimensional atomic crystals including graphene and its derivatives.

17.
Nat Commun ; 5: 4843, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25208890

RESUMO

Flexible barrier films preventing permeation of gases and moistures are important for many industries ranging from food to medical and from chemical to electronic. From this perspective, graphene has recently attracted particular interest because its defect-free monolayers are impermeable to all atoms and molecules. However, it has been proved to be challenging to develop large-area defectless graphene films suitable for industrial use. Here we report barrier properties of multilayer graphitic films made by gentle chemical reduction of graphene oxide laminates with hydroiodic and ascorbic acids. They are found to be highly impermeable to all gases, liquids and aggressive chemicals including, for example, hydrofluoric acid. The exceptional barrier properties are attributed to a high degree of graphitization of the laminates and little structural damage during reduction. This work indicates a close prospect of graphene-based flexible and inert barriers and protective coatings, which can be of interest for numerous applications.

18.
Sci Rep ; 4: 5517, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24980150

RESUMO

Plasmonics has established itself as a branch of physics which promises to revolutionize data processing, improve photovoltaics, and increase sensitivity of bio-detection. A widespread use of plasmonic devices is notably hindered by high losses and the absence of stable and inexpensive metal films suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics.

19.
Artigo em Russo | MEDLINE | ID: mdl-24637817

RESUMO

We examined 30 patients with a presumptive diagnosis of Prader-Willi and Angelman syndromes. In four patients, 15q11.2-q13 deletions were identified by cytogenetic techniques. The FISH method was used to study eight patients, in five of them microdeletions were also confirmed. High-resolution comparative genomic hybridization (CGH) and comparative genomic hybridization using DNA microarrays (array CGH) allowed to find 15q11.2-q13 deletions in five patients. These cases demonstrate the need for high-resolution post-genomic technologies (array CGH - molecular karyotyping) in the combination with classical cytogenetic and molecular cytogenetic techniques.


Assuntos
Síndrome de Angelman/diagnóstico , Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Testes Genéticos/métodos , Síndrome de Prader-Willi/diagnóstico , Síndrome de Angelman/genética , Hibridização Genômica Comparativa , Humanos , Recém-Nascido , Masculino , Síndrome de Prader-Willi/genética
20.
Science ; 343(6172): 752-4, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24531966

RESUMO

Graphene-based materials can have well-defined nanometer pores and can exhibit low frictional water flow inside them, making their properties of interest for filtration and separation. We investigate permeation through micrometer-thick laminates prepared by means of vacuum filtration of graphene oxide suspensions. The laminates are vacuum-tight in the dry state but, if immersed in water, act as molecular sieves, blocking all solutes with hydrated radii larger than 4.5 angstroms. Smaller ions permeate through the membranes at rates thousands of times faster than what is expected for simple diffusion. We believe that this behavior is caused by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in. The anomalously fast permeation is attributed to a capillary-like high pressure acting on ions inside graphene capillaries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA