Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791360

RESUMO

Overly fast corrosion degradation of biodegradable magnesium alloys has been a major problem over the last several years. The development of protective coatings by using biocompatible, biodegradable, and non-toxic material such as chitosan ensures a reduction in the rate of corrosion of Mg alloys in simulated body fluids. In this study, chitosan/TiO2 nanocomposite coating was used for the first time to hinder the corrosion rate of Mg19Zn1Ca alloy in Hank's solution. The main goal of this research is to investigate and explain the corrosion degradation mechanism of Mg19Zn1Ca alloy coated by nanocomposite chitosan-based coating. The chemical composition, structural analyses, and corrosion tests were used to evaluate the protective properties of the chitosan/TiO2 coating deposited on the Mg19Zn1Ca substrate. The chitosan/TiO2 coating slows down the corrosion rate of the magnesium alloy by more than threefold (3.6 times). The interaction of TiO2 (NPs) with the hydroxy and amine groups present in the chitosan molecule cause their uniform distribution in the chitosan matrix. The chitosan/TiO2 coating limits the contact of the substrate with Hank's solution.


Assuntos
Ligas , Quitosana , Materiais Revestidos Biocompatíveis , Magnésio , Titânio , Quitosana/química , Titânio/química , Ligas/química , Corrosão , Magnésio/química , Materiais Revestidos Biocompatíveis/química , Zinco/química , Teste de Materiais , Cálcio/química , Nanocompostos/química
2.
Materials (Basel) ; 17(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38255576

RESUMO

In this study, thin ribbons of amorphous Mg72Zn27Pt1 and Mg72Zn27Ag1 alloys with potential use in biomedicine were analyzed in terms of the crystallization mechanism. Non-isothermal annealing in differential scanning calorimetry (DSC) with five heating rates and X-ray diffraction (XRD) during heating were performed. Characteristic temperatures were determined, and the relative crystalline volume fraction was estimated. The activation energies were calculated using the Kissinger method and the Avrami exponent using the Jeziorny-Avrami model. The addition of platinum and silver shifts the onset of crystallization towards higher temperatures, but Pt has a greater impact. In each case, Eg > Ex > Ep (activation energy of the glass transition, the onset of crystallization, and the peak, respectively), which indicates a greater energy barrier during glass transition than crystallization. The highest activation energy was observed for Mg72Zn27Pt1 due to the difference in the size of the atoms of all alloy components. The crystallization in Mg72Zn27Ag1 occurs faster than in Mg72Zn27Pt1, and the alloy with Pt has higher (temporary) thermal stability. The Avrami exponent (n) values oscillate in the range of 1.7-2.6, which can be interpreted as one- and two-dimensional crystal growth with a constant/decreasing nucleation rate during the process. Moreover, the lower the heating rate, the higher the nucleation rate. The values of n for Mg72Zn27Pt1 indicate a greater number of nuclei and grains than for Mg72Zn27Ag1. The XRD tests indicate the presence of α-Mg and Mg12Zn13 for both Mg72Zn27Pt1 and Mg72Zn27Ag1, but the contribution of the Mg12Zn13 phase is greater for Mg72Zn27Ag1.

3.
Materials (Basel) ; 16(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37297241

RESUMO

The influence of heat treatment parameters such as the annealing time and austempering temperature on the microstructure, tribological properties and corrosion resistance of ductile iron have been investigated. It has been revealed that the scratch depth of cast iron samples increases with the extension of the isothermal annealing time (from 30 to 120 min) and the austempering temperature (from 280 °C to 430 °C), while the hardness value decreases. A low value of the scratch depth and a high hardness at low values of the austempering temperature and short isothermal annealing time is related to the presence of martensite. Moreover, the presence of a martensite phase has a beneficial influence on the corrosion resistance of austempered ductile iron.

4.
Biomater Adv ; 136: 212791, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929324

RESUMO

Tailoring surface properties by layer-by-layer (LBL) deposition directed on the construction of complex multilayer coatings with nanoscale precision enables the development of novel structures and devices with desired functional properties (i.e., osseointegration, bactericidal activity, biocorrosion protection). Herein, electrostatic self-assembly was applied to fabricate biopolymer-based coatings involving chitosan (CSM) and alginate (AL) enriched with caffeic acid (CA) on Ti-6Al-7Nb alloyed surfaces. The method of CA grafting onto the chitosan backbone (CA-g-CSM) as well as all used reagents for implant functionalization were chosen as green and sustainable approach. The final procedure of surface modification of the Ti-6Al-7Nb alloy consists of three steps: (i) chemical treatment in Piranha solution, (ii) plasma chemical-activation of the Ti alloy surface in a RF CVD (Radio Frequency Chemical Vapour Deposition) reactor using Ar, O2 and NH3 gaseous precursors, and (iii) a multi-step deposition of bio-functional coatings via dip-coating method. Corrosion tests have revealed that the resulting chitosan-based coatings, also these involving CA, block the specimen surface and hinder corrosion of titanium alloy. Furthermore, the antioxidant layers are characterized by beneficial level of roughness (Ra up ca. 350 nm) and moderate hydrophilicity (59°) with the dispersion part of conducive surface energy ca. 30 mJ/m2. Noteworthy, all coatings are biocompatible as the intact morphology of cultured eukaryotic cells ensured proper growth and proliferation, while exhibit bacteriostatic character, particularly in contact with Gram-(-) bacteria (E. coli). The study indicates that the applied simple sustainable strategy has contributed significantly to obtaining homogeneous, stable, and biocompatible while antibacterial biopolymer-based coatings.


Assuntos
Quitosana , Titânio , Ligas , Ácidos Cafeicos , Quitosana/química , Escherichia coli , Imersão , Eletricidade Estática , Titânio/química
5.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361065

RESUMO

Chitosan coatings are deposited on the surface of Mg20Zn magnesium alloy by means of the spin coating technique. Their structure was investigated using Fourier Transform Infrared Spectroscopy (FTIR) an X-ray photoelectron spectroscopy (XPS). The surface morphology of the magnesium alloy substrate and chitosan coatings was determined using Scanning Electron Microscope (FE-SEM) analysis. Corrosion tests (linear sweep voltamperometry and chronoamperometry) were performed on uncoated and coated magnesium alloy in the Hank's solution. In both cases, the hydrogen evolution method was used to calculate the corrosion rate after 7-days immersion in the Hank's solution at 37 °C. It was found that the corrosion rate is 3.2 mm/year and 1.2 mm/year for uncoated and coated substrates, respectively. High corrosion resistance of Mg20Zn alloy covered by multilayer coating (CaP coating + chitosan water glass) is caused by formation of CaSiO3 and Ca3(PO4)2 compounds on its surface.


Assuntos
Ligas/química , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Magnésio/química , Zinco/química , Fenômenos Bioquímicos , Corrosão , Propriedades de Superfície
6.
Materials (Basel) ; 13(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784911

RESUMO

The aim of this work was to monitor the corrosion rate of the Mg72Zn24Ca4 and Zn87Mg9Ca4 alloys. The purity of the alloying elements was 99.9%. The melt process was carried out in an induction furnace. The melting process took place under the cover of an inert gas (argon). The copper form was flooded by liquid alloy. Then, in order to obtain ribbons, the cast alloy, in rod shape, was re-melted on the melt spinning machine. The corrosion resistance of both alloys has been determined on the basis of the following experiments: measurements of the evolution of OCP (open circuit potential), LSV (linear sweep voltamperometry) and EIS (electrochemical impedance spectroscopy). All corrosion tests were carried out in Ringer's solution at 37 °C and pH 7.2. The corrosion tests have revealed that the zinc alloy, Zn87Mg9Ca4, exhibits significantly higher corrosion resistance in the Ringer solution compared to the magnesium alloy, Mg72Zn24Ca4. Moreover, it has been shown that the cathodic reaction proceeds faster on the surface of ribbons. EIS measurements show that the dissolution of Mg alloy proceeds with two steps: transfer of Mg2+ ions to the Ringer solution and then the formation of the corrosion products, which are deposited on the surface of magnesium alloy. It has been revealed, too, that for both bulk materials, diffusion of chloride ions through the corrosion product's layer takes place.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...