Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2319233121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547064

RESUMO

Chemical transformations near plasmonic metals have attracted increasing attention in the past few years. Specifically, reactions occurring within plasmonic nanojunctions that can be detected via surface and tip-enhanced Raman (SER and TER) scattering were the focus of numerous reports. In this context, even though the transition between localized and nonlocal (quantum) plasmons at nanojunctions is documented, its implications on plasmonic chemistry remain poorly understood. We explore the latter through AFM-TER-current measurements. We use two molecules: i) 4-mercaptobenzonitrile (MBN) that reports on the (non)local fields and ii) 4-nitrothiophenol (NTP) that features defined signatures of its neutral/anionic forms and dimer product, 4,4'-dimercaptoazobenzene (DMAB). The transition from classical to quantum plasmons is established through our optical measurements: It is marked by molecular charging and optical rectification. Simultaneously recorded force and current measurements support our assignments. In the case of NTP, we observe the parent and DMAB product beneath the probe in the classical regime. Further reducing the gap leads to the collapse of DMAB to form NTP anions. The process is reversible: Anions subsequently recombine into DMAB. Our results have significant implications for AFM-based TER measurements and their analysis, beyond the scope of this work. In effect, when precise control over the junction is not possible (e.g., in SER and ambient TER), both classical and quantum plasmons need to be considered in the analysis of plasmonic reactions.

2.
Nano Lett ; 23(19): 9114-9118, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751571

RESUMO

Our knowledge of the electromagnetic fields that power modern nanoscale optical measurements, including (non)linear tip-enhanced Raman and photoluminescence, chiefly stems from numerical simulations. Aside from idealized in silico vs heterogeneous (nano)structures in the laboratory, challenges in quantitative descriptions of nanoscale light-matter interactions more generally stem from the very nature of the problem, which lies at the interface of classical and quantum theories. This is particularly the case in ultrahigh spatial resolution measurements that are sensitive to local optical field variations that take place on subnanometer length scales. This work approaches this challenge through extinction-based spectral nanoimaging experiments. We demonstrate <1 nm spatial resolution in hyperspectral extinction measurements that track spatially varying plasmon resonances. We describe the principles behind our experiments and highlight more general implications of our observations.

3.
J Phys Chem Lett ; 14(37): 8334-8338, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37698921

RESUMO

We revisit nanoscale local optical field imaging via tip-enhanced Raman scattering (TERS). Rather than taking advantage of molecular reporters to probe different aspects of the local fields, we show how ultralow frequency Raman (ULF) scattering from the (nanocorrugated) metallic probe itself can be used for the same purpose. The bright ULF-TERS response we record allows non-invasive (tapping mode feedback) local field imaging, enables visualization of the local fields of small (≥20 nm) isolated plasmonic particles, and can also be exploited to distinguish between Si and SiO2 domains with 5 nm spatial resolution. We describe our approach and its limitations, particularly when it comes to using all-metallic versus molecular reporters.

4.
Small ; 19(6): e2205800, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587989

RESUMO

The ability to control the density and spatial distribution of substitutional dopants in semiconductors is crucial for achieving desired physicochemical properties. Substitutional doping with adjustable doping levels has been previously demonstrated in 2D transition metal dichalcogenides (TMDs); however, the spatial control of dopant distribution remains an open field. In this work, edge termination is demonstrated as an important characteristic of 2D TMD monocrystals that affects the distribution of substitutional dopants. Particularly, in chemical vapor deposition (CVD)-grown monolayer WS2 , it is found that a higher density of transition metal dopants is always incorporated in sulfur-terminated domains when compared to tungsten-terminated domains. Two representative examples demonstrate this spatial distribution control, including hexagonal iron- and vanadium-doped WS2 monolayers. Density functional theory (DFT) calculations are further performed, indicating that the edge-dependent dopant distribution is due to a strong binding of tungsten atoms at tungsten-zigzag edges, resulting in the formation of open sites at sulfur-zigzag edges that enable preferential dopant incorporation. Based on these results, it is envisioned that edge termination in crystalline TMD monolayers can be utilized as a novel and effective knob for engineering the spatial distribution of substitutional dopants, leading to in-plane hetero-/multi-junctions that display fascinating electronic, optoelectronic, and magnetic properties.

5.
Angew Chem Int Ed Engl ; 62(4): e202215213, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36445830

RESUMO

We report a precious-metal-free molecular catalyst-based photocathode that is active for aqueous CO2 reduction to CO and methanol. The photoelectrode is composed of cobalt phthalocyanine molecules anchored on graphene oxide which is integrated via a (3-aminopropyl)triethoxysilane linker to p-type silicon protected by a thin film of titanium dioxide. The photocathode reduces CO2 to CO with high selectivity at potentials as mild as 0 V versus the reversible hydrogen electrode (vs RHE). Methanol production is observed at an onset potential of -0.36 V vs RHE, and reaches a peak turnover frequency of 0.18 s-1 . To date, this is the only molecular catalyst-based photoelectrode that is active for the six-electron reduction of CO2 to methanol. This work puts forth a strategy for interfacing molecular catalysts to p-type semiconductors and demonstrates state-of-the-art performance for photoelectrochemical CO2 reduction to CO and methanol.

6.
J Phys Chem Lett ; 13(25): 5854-5859, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35727212

RESUMO

The interplay between excitons and phonons governs the optical and electronic properties of transition metal dichalcogenides (TMDs). Even though a number of linear and nonlinear optical-, electron-, and photoelectron-based approaches have been developed and/or adopted to characterize excitons and phonons in single/few-layer TMDs and their heterostructures, no existing method is capable of directly probing ultralow-frequency and interlayer phonons on the nanoscale. To this end, we developed ultralow-frequency tip-enhanced Raman spectroscopy, which allows spectrally and spatially resolved chemical and structural nanoimaging of WSe2/WS2 heterostructures. In this work, we apply this method to analyze phonons in nanobubbles that are sustained in these heterobilayers. Our method is capable of directly probing interlayer (de)coupling using our novel structurally sensitive nano-optical probe and the interplay between excitons and interlayer/intralayer phonons through correlation analysis of the recorded spectral images.

7.
Nanoscale ; 14(16): 6133-6143, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35388816

RESUMO

We conducted a tip-enhanced Raman scattering spectroscopy (TERS) and photoluminescence (PL) study of quasi-1D TaSe3-δ nanoribbons exfoliated onto gold substrates. At a selenium deficiency of δ ∼ 0.25 (Se/Ta = 2.75), the nanoribbons exhibit a strong, broad PL peak centered around ∼920 nm (1.35 eV), suggesting their semiconducting behavior. Such nanoribbons revealed a strong TERS response under 785 nm (1.58 eV) laser excitation, allowing for their nanoscale spectroscopic imaging. Nanoribbons with a smaller selenium deficiency (Se/Ta = 2.85, δ ∼ 0.15) did not show any PL or TERS response. The confocal Raman spectra of these samples agree with the previously-reported spectra of metallic TaSe3. The differences in the optical response of the nanoribbons examined in this study suggest that even small variations in Se content can induce changes in electronic band structure, causing samples to exhibit either metallic or semiconducting character. The temperature-dependent electrical measurements of devices fabricated with both types of materials corroborate these observations. The density-functional-theory calculations revealed that substitution of an oxygen atom in a Se vacancy can result in band gap opening and thus enable the transition from a metal to a semiconductor. However, the predicted band gap is substantially smaller than that derived from the PL data. These results indicate that the properties of van der Waals materials can vary significantly depending on stoichiometry, defect types and concentration, and possibly environmental and substrate effects. In view of this finding, local probing of nanoribbon properties with TERS becomes essential to understanding such low-dimensional systems.

8.
ACS Nano ; 16(4): 6858-6865, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35404582

RESUMO

MXenes are among the most widely researched materials due to a unique combination of high electronic conductivity and hydrophilic surface, confined in a 2D structure. Therefore, comprehensive characterization of individual MXene flakes is of great importance. Here we report on nanoscale Raman imaging of single-layer and few-layer flakes of Ti3C2Tx MXene deposited on a gold substrate using tip-enhanced Raman scattering (TERS). TERS spectra of MXene monolayers are dominated by an intense peak at around 201 cm-1 and two well-defined peaks at around 126 and 725 cm-1. Absolute intensities of these peaks decrease with increasing number of layers, though the relative intensity of the 126 and 725 cm-1 bands as compared to the 201 cm-1 band increases. The peak positions of the main MXene bands do not significantly change in flakes of different number of layers, suggesting weak coupling between the MXene layers. In addition, we observed stiffening of the 201 cm-1 vibration over the wrinkles in MXene flakes. Using TERS for nanoscale spectroscopic characterization of Ti3C2Tx allows fast Raman mapping with deep subdiffraction resolution at the laser power density on the sample about an order of magnitude lower as compared to confocal Raman measurements. Finally, we demonstrate very high environmental stability of stoichiometric single-layer MXenes and show that the intensity of TERS response from the single- and few-layer flakes of Ti3C2Tx can be used to track early stages of degradation, well before significant morphological changes appear.

9.
ACS Nano ; 16(1): 340-350, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34936762

RESUMO

The nature of the interface in lateral heterostructures of 2D monolayer semiconductors including its composition, size, and heterogeneity critically impacts the functionalities it engenders on the 2D system for next-generation optoelectronics. Here, we use tip-enhanced Raman scattering (TERS) to characterize the interface in a single-layer MoS2/WS2 lateral heterostructure with a spatial resolution of 50 nm. Resonant and nonresonant TERS spectroscopies reveal that the interface is alloyed with a size that varies over an order of magnitude─from 50 to 600 nm─within a single crystallite. Nanoscale imaging of the continuous interfacial evolution of the resonant and nonresonant Raman spectra enables the deconvolution of defect activation, resonant enhancement, and material composition for several vibrational modes in single-layer MoS2, MoxW1-xS2, and WS2. The results demonstrate the capabilities of nanoscale TERS spectroscopy to elucidate macroscopic structure-property relationships in 2D materials and to characterize lateral interfaces of 2D systems on length scales that are imperative for devices.

10.
Beilstein J Nanotechnol ; 12: 1226-1236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868799

RESUMO

The quality of topographic images obtained using atomic force microscopy strongly depends on the accuracy of the choice of scanning parameters. When using the most common scanning method - semicontact amplitude modulation (tapping) mode, the choice of scanning parameters is quite complicated, since it requires taking into account many factors and finding the optimal balance between them. A researcher's task can be significantly simplified by introducing new scanning techniques. Two such techniques are described: vertical and dissipation modes. Significantly simplified and formalized choice of the imaging parameters in these modes allows addressing a wide range of formerly challenging tasks - from scanning rough samples with high aspect ratio features to molecular resolution imaging.

11.
J Chem Phys ; 154(24): 241101, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241355

RESUMO

We combine nanoindentation, herein achieved using atomic force microscopy-based pulsed-force lithography, with tip-enhanced Raman spectroscopy (TERS) and imaging. Our approach entails indentation and multimodal characterization of otherwise flat Au substrates, followed by chemical functionalization and TERS spectral imaging of the indented nanostructures. We find that the resulting structures, which vary in shape and size depending on the tip used to produce them, may sustain nano-confined and significantly enhanced local fields. We take advantage of the latter and illustrate TERS-based ultrasensitive detection/chemical fingerprinting as well as chemical reaction imaging-all using a single platform for nano-lithography, topographic imaging, hyperspectral dark field optical microscopy, and TERS.

12.
Nano Lett ; 21(13): 5745-5753, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152777

RESUMO

van der Waals materials exhibit naturally passivated surfaces and an ability to form versatile heterostructures to enable an examination of carrier transport mechanisms not seen in traditional materials. Here, we report a new type of homojunction termed a "band-bending junction" whose potential landscape depends solely on the difference in thickness between the two sides of the junction. Using MoS2 on Au as a prototypical example, we find that surface potential differences can arise from the degree of vertical band bending in thin and thick regions. Furthermore, by using scanning ultrafast electron microscopy, we examine the spatiotemporal dynamics of charge carriers generated at this junction and find that lateral carrier separation is enabled by differences in the band bending in the vertical direction, which we verify with simulations. Band-bending junctions may therefore enable new optoelectronic devices that rely solely on band bending arising from thickness variations to separate charge carriers.


Assuntos
Diagnóstico por Imagem
13.
Artigo em Inglês | MEDLINE | ID: mdl-33093932

RESUMO

Plasmonic tip-sample junctions, at which the incident and scattered optical fields are localized and optimally enhanced, are often exploited to achieve ultrasensitive and highly spatially localized tip-enhanced Raman scattering (TERS). Recent work has demonstrated that the sensitivity and spatial resolution that are required to probe single molecules are attainable in such platforms. In this work, we observe and rationalize comparable TERS from few-layer WSe2 single crystals exfoliated onto Au- and Cr-coated Si substrates, using a plasmonic TERS probe excited with a 638 nm laser. Our experimental observations are supported by finite-difference time-domain simulations that illustrate that the attainable field enhancement factors at the Au-Au and Au-Cr tip-sample junctions are comparable in magnitude. Through a combined experimental and theoretical analysis, we propose that besides Au/Ag, several metallic substrates may be used to record bright TERS spectral images.

14.
J Chem Phys ; 153(2): 024702, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668931

RESUMO

When layers of van der Waals materials are deposited via exfoliation or viscoelastic stamping, nanobubbles are sometimes created from aggregated trapped fluids. Though they can be considered a nuisance, nanobubbles have attracted scientific interest in their own right owing to their ability to generate large in-plane strain gradients that lead to rich optoelectronic phenomena, especially in the semiconducting transition metal dichalcogenides. Determination of the strain within the nanobubbles, which is crucial to understanding these effects, can be approximated using elasticity theory. However, the Föppl-von Kármán equations that describe strain in a distorted thin plate are highly nonlinear and often necessitate assuming circular symmetry to achieve an analytical solution. Here, we present an easily implemented numerical method to solve for strain tensors of nanobubbles with arbitrary symmetry in 2D crystals. The method only requires topographic information from atomic force microscopy and the Poisson ratio of the 2D material. We verify that this method reproduces the strain for circularly symmetric nanobubbles that have known analytical solutions. Finally, we use the method to reproduce the Grüneisen parameter of the E' mode for 1L-WS2 nanobubbles on template-stripped Au by comparing the derived strain with measured Raman shifts from tip-enhanced Raman spectroscopy, demonstrating the utility of our method for estimating localized strain in 2D crystals.

15.
J Phys Chem Lett ; 11(15): 6112-6118, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32633525

RESUMO

Gold-mediated exfoliation of MoS2 has recently attracted considerable interest. The strong interaction between MoS2 and Au facilitates preferential production of centimeter-sized monolayer MoS2 with near-unity yield and provides a heterostructure system noteworthy from a fundamental standpoint. However, little is known about the detailed nature of the MoS2-Au interaction and its evolution with the MoS2 thickness. Here, we identify the specific vibrational and binding energy fingerprints of this interaction using Raman and X-ray photoelectron spectroscopy, which indicate substantial strain and charge doping in monolayer MoS2. Tip-enhanced Raman spectroscopy reveals heterogeneity of the MoS2-Au interaction at the nanoscale, reflecting the spatial nonconformity between the two materials. Micro-Raman spectroscopy shows that this interaction is strongly affected by the roughness and cleanliness of the underlying Au. Our results elucidate the nature of the MoS2-Au interaction and guide strain and charge doping engineering of MoS2.

16.
Nat Nanotechnol ; 15(10): 854-860, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32661371

RESUMO

In monolayer transition-metal dichalcogenides, localized strain can be used to design nanoarrays of single photon sources. Despite strong empirical correlation, the nanoscale interplay between excitons and local crystalline structure that gives rise to these quantum emitters is poorly understood. Here, we combine room-temperature nano-optical imaging and spectroscopic analysis of excitons in nanobubbles of monolayer WSe2 with atomistic models to study how strain induces nanoscale confinement potentials and localized exciton states. The imaging of nanobubbles in monolayers with low defect concentrations reveals localized excitons on length scales of around 10 nm at multiple sites around the periphery of individual nanobubbles, in stark contrast to predictions of continuum models of strain. These results agree with theoretical confinement potentials atomistically derived from the measured topographies of nanobubbles. Our results provide experimental and theoretical insights into strain-induced exciton localization on length scales commensurate with exciton size, realizing key nanoscale structure-property information on quantum emitters in monolayer WSe2.

17.
J Phys Chem Lett ; 11(15): 5890-5895, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32619091

RESUMO

Classical versus quantum plasmons are responsible for the recorded signals in non-contact-mode versus contact-mode tip-enhanced Raman spectroscopy (TERS) and lead to distinct observables. Under otherwise identical experimental conditions, we illustrate the concept through tapping- and contact-mode TERS mapping of chemically functionalized silver nanocubes. Whereas molecular charging, chemical transformations, and optical rectification are prominent observables in contact-mode TERS, the same effects are suppressed using tapping-mode feedback. In effect, this work demonstrates that nanoscale physical and chemical processes can be accessed and/or suppressed on demand in the TERS geometry. The advantages of tapping-mode TERS are otherwise highlighted with the latter in mind.

18.
J Phys Chem Lett ; 11(10): 3809-3814, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32340455

RESUMO

We revisit the reductive coupling of p-nitrothiophenol (NTP) to form dimercaptoazobenzene (DMAB), herein monitored through gap-mode tip-enhanced Raman spectroscopy (TERS) and nanoimaging. We employ a plasmonic Au probe (100 nm diameter at its apex) illuminated with a 633 nm laser source (50 µW/µm2 at the sample position) to image an NTP-coated faceted silver nanoparticle (∼70 nm diameter). A detailed analysis of the recorded spectra reveals that anionic NTP species contribute to the recorded spectral images, in addition to the more thoroughly described DMAB product. Notably, the signatures of the anions are more pronounced than those of the DMAB product under our present experimental conditions. Our results thus demonstrate that anions and their spectral signatures must be considered in the analysis of plasmon-enhanced optical spectra and images.

19.
ACS Appl Mater Interfaces ; 11(41): 38218-38225, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31512847

RESUMO

Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have been explored for many optoelectronic applications. Most of these applications require them to be on insulating substrates. However, for many fundamental property characterizations, such as mapping surface potential or conductance, insulating substrates are nonideal as they lead to charging and doping effects or impose the inhomogeneity of their charge environment on the atomically thin 2D layers. Here, we report a simple method of residue-free dry transfer of 2D TMDC crystal layers. This method is enabled via noble-metal (gold, silver) thin films and allows comprehensive nanoscale characterization of transferred TMDC crystals with multiple scanning probe microscopy techniques. In particular, intimate contact with underlying metal allows efficient tip-enhanced Raman scattering characterization, providing high spatial resolution (<20 nm) for Raman spectroscopy. Further, scanning Kelvin probe force microscopy allows high-resolution mapping of surface potential on transferred crystals, revealing their spatially varying structural and electronic properties. The layer-dependent contact potential difference is clearly observed and explained by charge transfer from contacts with Au and Ag. The demonstrated sample preparation technique can be generalized to probe many different 2D material surfaces and has broad implications in understanding of the metal contacts and buried interfaces in 2D material-based devices.

20.
Nat Commun ; 9(1): 2891, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038358

RESUMO

Visualising the distribution of structural defects and functional groups present on the surface of two-dimensional (2D) materials such as graphene oxide challenges the sensitivity and spatial resolution of the most advanced analytical techniques. Here we demonstrate mapping of functional groups on a carboxyl-modified graphene oxide (GO-COOH) surface with a spatial resolution of ≈10 nm using tip-enhanced Raman spectroscopy (TERS). Furthermore, we extend the capability of TERS by measuring local electronic properties in situ, in addition to the surface topography and chemical composition. Our results reveal that the Fermi level at the GO-COOH surface decreases as the ID/IG ratio increases, correlating the local defect density with the Fermi level at nanometre length-scales. The in situ multi-parameter microscopy demonstrated in this work significantly improves the accuracy of nanoscale surface characterisation, eliminates measurement artefacts, and opens up the possibilities for characterising optoelectronic devices based on 2D materials under operational conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...