Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107882, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766989

RESUMO

Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been proven to be an effective means of decreasing COVID-19 mortality, hospitalization rates, and transmission. One of the vaccines deployed worldwide is ChAdOx1 nCoV-19, which uses an adenovirus vector to drive the expression of the original SARS-CoV-2 spike on the surface of transduced cells. Using cryo-electron tomography and subtomogram averaging, we determined the native structures of the vaccine product expressed on cell surfaces in situ. We show that ChAdOx1-vectored vaccines expressing the Beta SARS-CoV-2 variant produce abundant native prefusion spikes predominantly in one-RBD-up conformation. Furthermore, the ChAdOx1-vectored HexaPro-stabilized spike yields higher cell surface expression, enhanced RBD exposure, and reduced shedding of S1 compared to the wild type. We demonstrate in situ structure determination as a powerful means for studying antigen design options in future vaccine development against emerging novel SARS-CoV-2 variants and broadly against other infectious viruses.

2.
Nat Commun ; 14(1): 5149, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620323

RESUMO

The human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus in the human genome and is activated and expressed in many cancers and amyotrophic lateral sclerosis. We present the immature HERV-K capsid structure at 3.2 Å resolution determined from native virus-like particles using cryo-electron tomography and subtomogram averaging. The structure shows a hexamer unit oligomerized through a 6-helix bundle, which is stabilized by a small molecule analogous to IP6 in immature HIV-1 capsid. The HERV-K immature lattice is assembled via highly conserved dimer and trimer interfaces, as detailed through all-atom molecular dynamics simulations and supported by mutational studies. A large conformational change mediated by the linker between the N-terminal and the C-terminal domains of CA occurs during HERV-K maturation. Comparison between HERV-K and other retroviral immature capsid structures reveals a highly conserved mechanism for the assembly and maturation of retroviruses across genera and evolutionary time.


Assuntos
Esclerose Lateral Amiotrófica , Retrovirus Endógenos , Humanos , Retrovirus Endógenos/genética , Evolução Biológica , Capsídeo , Proteínas do Capsídeo/genética
3.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333227

RESUMO

A significant part of the human genome consists of endogenous retroviruses sequences. Human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus, is activated and expressed in many cancers and amyotrophic lateral sclerosis and possibly contributes to the aging process. To understand the molecular architecture of endogenous retroviruses, we determined the structure of immature HERV-K from native virus-like particles (VLPs) using cryo-electron tomography and subtomogram averaging (cryoET STA). The HERV-K VLPs show a greater distance between the viral membrane and immature capsid lattice, correlating with the presence of additional peptides, SP1 and p15, between the capsid (CA) and matrix (MA) proteins compared to the other retroviruses. The resulting cryoET STA map of the immature HERV-K capsid at 3.2 Å resolution shows a hexamer unit oligomerized through a 6-helix bundle which is further stabilized by a small molecule in the same way as the IP6 in immature HIV-1 capsid. The HERV-K immature CA hexamer assembles into the immature lattice via highly conserved dimmer and trimer interfaces, whose interactions were further detailed through all-atom molecular dynamics simulations and supported by mutational studies. A large conformational change mediated by the flexible linker between the N-terminal and the C-terminal domains of CA occurs between the immature and the mature HERV-K capsid protein, analogous to HIV-1. Comparison between HERV-K and other retroviral immature capsid structures reveals a highly conserved mechanism for the assembly and maturation of retroviruses across genera and evolutionary time.

4.
Structure ; 30(1): 95-106.e7, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34587504

RESUMO

Chimeric fusion proteins are essential tools for protein nanotechnology. Non-optimized protein-protein connections are usually flexible and therefore unsuitable as structural building blocks. Here we show that the ER/K motif, a single α-helical domain (SAH), can be seamlessly fused to terminal helices of proteins, forming an extended, partially free-standing rigid helix. This enables the connection of two domains at a defined distance and orientation. We designed three constructs termed YFPnano, T4Lnano, and MoStoNano. Analysis of experimentally determined structures and molecular dynamics simulations reveals a certain degree of plasticity in the connections that allows the adaptation to crystal contact opportunities. Our data show that SAHs can be stably integrated into designed structural elements, enabling new possibilities for protein nanotechnology, for example, to improve the exposure of epitopes on nanoparticles (structural vaccinology), to engineer crystal contacts with minimal impact on construct flexibility (for the study of protein dynamics), and to design novel biomaterials.


Assuntos
Epitopos/química , Proteínas Recombinantes de Fusão/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Nanopartículas , Estrutura Secundária de Proteína
5.
Nat Commun ; 12(1): 4629, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330917

RESUMO

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate cytopathic events induced by SARS-CoV-2 with virus replication processes in frozen-hydrated cells, we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. Here we report critical SARS-CoV-2 structural events - e.g. viral RNA transport portals, virus assembly intermediates, virus egress pathway, and native virus spike structures, in the context of whole-cell volumes revealing drastic cytppathic changes. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.


Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Montagem de Vírus/imunologia , Liberação de Vírus/imunologia , Replicação Viral/imunologia , Animais , COVID-19/epidemiologia , COVID-19/virologia , Chlorocebus aethiops , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Humanos , Pandemias/prevenção & controle , SARS-CoV-2/fisiologia , SARS-CoV-2/ultraestrutura , Células Vero , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia
6.
ACS Cent Sci ; 7(4): 594-602, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34056089

RESUMO

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation, and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirm the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

7.
bioRxiv ; 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33501433

RESUMO

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirms the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

8.
Res Sq ; 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33501431

RESUMO

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified recombinant viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the frozen-hydrated native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate the cytopathic events induced by SARS-CoV-2 with virus replication process under the frozen-hydrated condition, here we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. The results place critical SARS-CoV-2 structural events â€" e.g. viral RNA transport portals on double membrane vesicles, virus assembly and budding intermediates, virus egress pathways, and native virus spike structures from intracellular assembled and extracellular released virus - in the context of whole-cell images. The latter revealed numerous heterogeneous cytoplasmic vesicles, the formation of membrane tunnels through which viruses exit, and the drastic cytoplasm invasion into the nucleus. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.

9.
Viruses ; 14(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35062258

RESUMO

Retroviruses have a very complex and tightly controlled life cycle which has been studied intensely for decades. After a virus enters the cell, it reverse-transcribes its genome, which is then integrated into the host genome, and subsequently all structural and regulatory proteins are transcribed and translated. The proteins, along with the viral genome, assemble into a new virion, which buds off the host cell and matures into a newly infectious virion. If any one of these steps are faulty, the virus cannot produce infectious viral progeny. Recent advances in structural and molecular techniques have made it possible to better understand this class of viruses, including details about how they regulate and coordinate the different steps of the virus life cycle. In this review we summarize the molecular analysis of the assembly and maturation steps of the life cycle by providing an overview on structural and biochemical studies to understand these processes. We also outline the differences between various retrovirus families with regards to these processes.


Assuntos
Retroviridae/genética , Retroviridae/fisiologia , Retroviridae/ultraestrutura , Montagem de Vírus/fisiologia , Capsídeo/metabolismo , Microscopia Crioeletrônica , Genoma Viral , HIV-1/genética , HIV-1/fisiologia , HIV-1/ultraestrutura , Humanos , Modelos Moleculares , Vírion/metabolismo
10.
bioRxiv ; 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33173874

RESUMO

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified recombinant viral components and inactivated viruses. However, investigation of the SARS-CoV-2 infection in the native cellular context is scarce, and there is a lack of comprehensive knowledge on SARS-CoV-2 replicative cycle. Understanding the genome replication, assembly and egress of SARS-CoV-2, a multistage process that involves different cellular compartments and the activity of many viral and cellular proteins, is critically important as it bears the means of medical intervention to stop infection. Here, we investigated SARS-CoV-2 replication in Vero cells under the near-native frozen-hydrated condition using a unique correlative multi-modal, multi-scale cryo-imaging approach combining soft X-ray cryo-tomography and serial cryoFIB/SEM volume imaging of the entire SARS-CoV-2 infected cell with cryo-electron tomography (cryoET) of cellular lamellae and cell periphery, as well as structure determination of viral components by subtomogram averaging. Our results reveal at the whole cell level profound cytopathic effects of SARS-CoV-2 infection, exemplified by a large amount of heterogeneous vesicles in the cytoplasm for RNA synthesis and virus assembly, formation of membrane tunnels through which viruses exit, and drastic cytoplasm invasion into nucleus. Furthermore, cryoET of cell lamellae reveals how viral RNAs are transported from double-membrane vesicles where they are synthesized to viral assembly sites; how viral spikes and RNPs assist in virus assembly and budding; and how fully assembled virus particles exit the cell, thus stablishing a model of SARS-CoV-2 genome replication, virus assembly and egress pathways.

11.
Plasmid ; 106: 102445, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31669339

RESUMO

The engineering of fusion proteins for structural biology and protein nanotechnology often requires seamless DNA assembly with slight variations in the domain boundaries. To improve the molecular biology workflow for such projects, we evaluated the use of sub-terminal homologous sequences (HS) for co-transformation cloning and for T5 exonuclease / Phusion DNA polymerase mediated in vitro assembly. To quantify the effects of different HS-to-ends distances on cloning efficiency, we designed a blue-white-pink screening system that allowed us to easily identify positive clones (blue colonies), negative clones resulting from circular template plasmid (pink colonies) and negative colonies originating from linearized plasmids that have recircularized without an insert (white colonies). Our experiments show that both methods are feasible with HS-to-ends distances up to at least 10 base pairs. Using a combination of co-transformation cloning at sub-terminal HS and nucleotide insertions in non-annealing primer 5'-overhangs, we integrated a fusion protein into the third intracellular loop (ICL) of a G-protein-coupled receptor (GPCR) with nine different linker boundaries, using only a single plasmid linearization reaction. This molecular cloning approach is an invaluable tool for protein engineering, protein nanotechnology and synthetic biology that extends the range of applications of DNA assembly strategies.


Assuntos
Clonagem Molecular/métodos , Engenharia Genética , Plasmídeos/genética , Homologia de Sequência , Humanos , Modelos Moleculares , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...