Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679335

RESUMO

BACKGROUND: Von Willebrand disease (VWD) is the most common inherited bleeding disorder, characterized by either partial or complete von Willebrand factor (VWF) deficiency or by the occurrence of VWF proteoforms of altered functionality. The gene encoding VWF is highly polymorphic, giving rise to a variety of proteoforms with varying plasma concentrations and clinical significance. OBJECTIVES: To address this complexity, we translated genomic variation in VWF to corresponding VWF proteoforms circulating in blood. PATIENTS/METHODS: VWF was characterized in VWD patients (n=64) participating in the Willebrand in the Netherlands (WiN) by conventional laboratory testing, DNA sequencing and complementary discovery and targeted mass spectrometry-based plasma proteomic strategies. RESULTS: Unbiased plasma profiling combined with immune-enrichment of VWF, verified VWF and its binding partner Factor VIII as key determinants of VWD and revealed a remarkable heterogeneity in VWF amino acid sequence coverage among patients. Subsequent VWF proteotyping enabled identification of both polymorphisms (e.g. p.Thr789Ala, p.Gln852Arg, p.Thr1381Ala), as well as pathogenic variants (n=16) along with their corresponding canonical sequences. Targeted proteomics using stable isotope labeled peptides confirmed unbiased proteotyping for five selected variants and suggested differential proteoform quantities in plasma. The variant-to-wildtype peptide ratio was determined in six type 2B patients heterozygous for p.Arg1306Trp, confirming the relatively low proteoform concentration of the pathogenic variant. The elevated VWFpp/VWF ratio indicated increased clearance of specific VWF proteoforms. CONCLUSIONS: This study highlights how VWF proteotyping from plasma could be the first step to bridge the gap between genotyping and functional testing in VWD.

2.
Transfusion ; 63(3): 564-573, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36722460

RESUMO

BACKGROUND: Biomonitoring may provide important insights into the impact of a whole blood donation for individual blood donors. STUDY DESIGN AND METHODS: Here, we used unbiased mass spectrometry (MS)-based proteomics to assess longitudinal changes in the global plasma proteome, after a single blood donation for new and regular donors. Subsequently, we compared plasma proteomes of 76 male and female whole blood donors, that were grouped based on their ferritin and hemoglobin (Hb) levels. RESULTS: The longitudinal analysis showed limited changes in the plasma proteomes of new and regular donors after a whole blood donation during a 180-day follow-up period, apart from a significant short-term decrease in fibronectin. No differences were observed in the plasma proteomes of donors with high versus low Hb and/or ferritin levels. Plasma proteins with the highest variation between and within donors included pregnancy zone protein, which was associated with sex, Alfa 1-antitrypsin which was associated with the allelic variation, and Immunoglobulin D. Coexpression analysis revealed clustering of proteins that are associated with platelet, red cell, and neutrophil signatures as well as with the complement system and immune responses, including a prominent correlating cluster of immunoglobulin M (IgM), immunoglobulin J chain (JCHAIN), and CD5 antigen-like (CD5L). DISCUSSION: Overall, our proteomic approach shows that whole blood donation has a limited impact on the plasma proteins measured. Our findings suggest that plasma profiling can be successfully employed to consistently detect proteins and protein complexes that reflect the functionality and integrity of platelets, red blood cells, and immune cells in blood donors and thus highlights its potential use for donor health monitoring.


Assuntos
Doação de Sangue , Proteoma , Humanos , Masculino , Feminino , Proteômica , Eritrócitos/química , Doadores de Sangue , Ferritinas , Hemoglobinas/análise
3.
J Thromb Haemost ; 21(2): 359-372.e3, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36700500

RESUMO

BACKGROUND: Inherited platelet disorders (IPDs) are a heterogeneous group of rare diseases that are caused by the defects in early megakaryopoiesis, proplatelet formation, and/or mature platelet function. Although genomic sequencing is increasingly used to identify genetic variants underlying IPD, this technique does not disclose resulting molecular changes that impact platelet function. Proteins are the functional units that shape platelet function; however, insights into how variants that cause IPDs impact platelet proteomes are limited. OBJECTIVES: The objective of this study was to profile the platelet proteomics signatures of IPDs. METHODS: We performed unbiased label-free quantitative mass spectrometry (MS)-based proteome profiling on platelets of 34 patients with IPDs with variants in 13 ISTH TIER1 genes that affect different stages of platelet development. RESULTS: In line with the phenotypical heterogeneity between IPDs, proteomes were diverse between IPDs. We observed extensive proteomic alterations in patients with a GFI1B variant and for genetic variants in genes encoding proteins that impact cytoskeletal processes (MYH9, TUBB1, and WAS). Using the diversity between IPDs, we clustered protein dynamics, revealing disrupted protein-protein complexes. This analysis furthermore grouped proteins with similar cellular function and location, classifying mitochondrial protein constituents and identifying both known and putative novel alpha granule associated proteins. CONCLUSIONS: With this study, we demonstrate a MS-based proteomics perspective to IPDs. By integrating the effects of IPDs that impact different aspects of platelet function, we dissected the biological contexts of protein alterations to gain further insights into the biology of platelet (dys)function.


Assuntos
Transtornos Plaquetários , Proteômica , Humanos , Proteoma/metabolismo , Transtornos Plaquetários/diagnóstico , Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Plaquetas/metabolismo , Trombopoese
4.
Thromb Res ; 210: 6-11, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954402

RESUMO

BACKGROUND: Many patients who are diagnosed with coronavirus disease 2019 (COVID-19) suffer from venous thromboembolic complications despite the use of stringent anticoagulant prophylaxis. Studies on the exact mechanism(s) underlying thrombosis in COVID-19 are limited as animal models commonly used to study venous thrombosis pathophysiology (i.e. rats and mice) are naturally not susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ferrets are susceptible to SARS-CoV-2 infection, successfully used to study virus transmission, and have been previously used to study activation of coagulation and thrombosis during influenza virus infection. OBJECTIVES: This study aimed to explore the use of (heat-inactivated) plasma and lung material from SARS-CoV-2-inoculated ferrets studying COVID-19-associated changes in coagulation and thrombosis. MATERIAL AND METHODS: Histology and longitudinal plasma profiling using mass spectrometry-based proteomics approach was performed. RESULTS: Lungs of ferrets inoculated intranasally with SARS-CoV-2 demonstrated alveolar septa that were mildly expanded by macrophages, and diffuse interstitial histiocytic pneumonia. However, no macroscopical or microscopical evidence of vascular thrombosis in the lungs of SARS-CoV-2-inoculated ferrets was found. Longitudinal plasma profiling revealed minor differences in plasma protein profiles in SARS-CoV-2-inoculated ferrets up to 2 weeks post-infection. The majority of plasma coagulation factors were stable and demonstrated a low coefficient of variation. CONCLUSIONS: We conclude that while ferrets are an essential and well-suited animal model to study SARS-CoV-2 transmission, their use to study SARS-CoV-2-related changes relevant to thrombotic disease is limited.


Assuntos
COVID-19 , Trombose , Trombose Venosa , Animais , Proteínas Sanguíneas , Furões , Humanos , Pulmão , Camundongos , Ratos , SARS-CoV-2
6.
Blood ; 135(24): 2171-2181, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32128589

RESUMO

Megakaryoblastic leukemia 1 (MKL1) promotes the regulation of essential cell processes, including actin cytoskeletal dynamics, by coactivating serum response factor. Recently, the first human with MKL1 deficiency, leading to a novel primary immunodeficiency, was identified. We report a second family with 2 siblings with a homozygous frameshift mutation in MKL1. The index case died as an infant from progressive and severe pneumonia caused by Pseudomonas aeruginosa and poor wound healing. The younger sibling was preemptively transplanted shortly after birth. The immunodeficiency was marked by a pronounced actin polymerization defect and a strongly reduced motility and chemotactic response by MKL1-deficient neutrophils. In addition to the lack of MKL1, subsequent proteomic and transcriptomic analyses of patient neutrophils revealed actin and several actin-related proteins to be downregulated, confirming a role for MKL1 as a transcriptional coregulator. Degranulation was enhanced upon suboptimal neutrophil activation, whereas production of reactive oxygen species was normal. Neutrophil adhesion was intact but without proper spreading. The latter could explain the observed failure in firm adherence and transendothelial migration under flow conditions. No apparent defect in phagocytosis or bacterial killing was found. Also, monocyte-derived macrophages showed intact phagocytosis, and lymphocyte counts and proliferative capacity were normal. Nonhematopoietic primary fibroblasts demonstrated defective differentiation into myofibroblasts but normal migration and F-actin content, most likely as a result of compensatory mechanisms of MKL2, which is not expressed in neutrophils. Our findings extend current insight into the severe immune dysfunction in MKL1 deficiency, with cytoskeletal dysfunction and defective extravasation of neutrophils as the most prominent features.


Assuntos
Citoesqueleto de Actina/metabolismo , Mutação da Fase de Leitura , Neutrófilos/fisiologia , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/metabolismo , Transativadores/deficiência , Transativadores/genética , Citoesqueleto de Actina/química , Movimento Celular/genética , Movimento Celular/fisiologia , Consanguinidade , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Masculino , Linhagem , Polimerização , Doenças da Imunodeficiência Primária/terapia , Proteômica , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...