Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 221, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143563

RESUMO

BACKGROUND: Increasing evidence suggests that a substantial proportion of disease-associated mutations occur in enhancers, regions of non-coding DNA essential to gene regulation. Understanding the structures and mechanisms of the regulatory programs this variation affects can shed light on the apparatuses of human diseases. RESULTS: We collect epigenetic and gene expression datasets from seven early time points during neural differentiation. Focusing on this model system, we construct networks of enhancer-promoter interactions, each at an individual stage of neural induction. These networks serve as the base for a rich series of analyses, through which we demonstrate their temporal dynamics and enrichment for various disease-associated variants. We apply the Girvan-Newman clustering algorithm to these networks to reveal biologically relevant substructures of regulation. Additionally, we demonstrate methods to validate predicted enhancer-promoter interactions using transcription factor overexpression and massively parallel reporter assays. CONCLUSIONS: Our findings suggest a generalizable framework for exploring gene regulatory programs and their dynamics across developmental processes; this includes a comprehensive approach to studying the effects of disease-associated variation on transcriptional networks. The techniques applied to our networks have been published alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure can be utilized across different cellular contexts and disorders.


Assuntos
Elementos Facilitadores Genéticos , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Humanos , Neurogênese/genética , Diferenciação Celular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Modelos Genéticos , Neurônios/metabolismo
2.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826254

RESUMO

Background: Increasing evidence suggests that a substantial proportion of disease-associated mutations occur in enhancers, regions of non-coding DNA essential to gene regulation. Understanding the structures and mechanisms of regulatory programs this variation affects can shed light on the apparatuses of human diseases. Results: We collected epigenetic and gene expression datasets from seven early time points during neural differentiation. Focusing on this model system, we constructed networks of enhancer-promoter interactions, each at an individual stage of neural induction. These networks served as the base for a rich series of analyses, through which we demonstrated their temporal dynamics and enrichment for various disease-associated variants. We applied the Girvan-Newman clustering algorithm to these networks to reveal biologically relevant substructures of regulation. Additionally, we demonstrated methods to validate predicted enhancer-promoter interactions using transcription factor overexpression and massively parallel reporter assays. Conclusions: Our findings suggest a generalizable framework for exploring gene regulatory programs and their dynamics across developmental processes. This includes a comprehensive approach to studying the effects of disease-associated variation on transcriptional networks. The techniques applied to our networks have been published alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure can be utilized across different cellular contexts and disorders.

3.
Nucleic Acids Res ; 52(4): 1613-1627, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38296821

RESUMO

The advent of perturbation-based massively parallel reporter assays (MPRAs) technique has facilitated the delineation of the roles of non-coding regulatory elements in orchestrating gene expression. However, computational efforts remain scant to evaluate and establish guidelines for sequence design strategies for perturbation MPRAs. In this study, we propose a framework for evaluating and comparing various perturbation strategies for MPRA experiments. Within this framework, we benchmark three different perturbation approaches from the perspectives of alteration in motif-based profiles, consistency of MPRA outputs, and robustness of models that predict the activities of putative regulatory motifs. While our analyses show very similar results across multiple benchmarking metrics, the predictive modeling for the approach involving random nucleotide shuffling shows significant robustness compared with the other two approaches. Thus, we recommend designing sequences by randomly shuffling the nucleotides of the perturbed site in perturbation-MPRA, followed by a coherence check to prevent the introduction of other variations of the target motifs. In summary, our evaluation framework and the benchmarking findings create a resource of computational pipelines and highlight the potential of perturbation-MPRA in predicting non-coding regulatory activities.


Assuntos
Técnicas Genéticas , Sequências Reguladoras de Ácido Nucleico , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA