Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38731252

RESUMO

Background: Series of whole-body cryotherapy (WBC) among healthy and physically active individuals can potentially reduce inflammatory response, although exact mechanisms remain unclear. Methods: The impact of whole-body cryotherapy on inflammation modulators among 28 young males, categorized as non-training (NTR, N = 10), non-training with WBC (NTR-WBC, N = 10), and training with WBC (TR-WBC, N = 8), is investigated in this study. Over a period of eight weeks, NTR-WBC and TR-WBC subjects underwent 24 WBC treatments (-130 °C for 3 min, three times a week), examining changes in mRNA expressions of IL-1A, IL-6, IL-10, IFN-G, SIRT1, SIRT3, SOD2, GSS, and ICAM-1. Results: The received data indicate an acute inflammatory response to initial WBC (increased IL-1A, IL-6, and SIRT), with a greater effect in NTR-WBC. Subsequent sessions showed enhanced expressions of antioxidative genes in both WBC groups, particularly non-trained, suggesting improved oxidative stress adaptation. A notable decrease in ICAM-1 mRNA post-24 WBC treatments in NTR-WBC signifies a potential systemic anti-inflammatory effect. Conclusions: The findings of the study suggest that the combination of regular physical activity with WBC administered three times per week can potentially modulate inflammatory and antioxidant responses. This modulation is evidenced by changes in the expression of genes related to these processes.

2.
Front Neurosci ; 18: 1375265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745938

RESUMO

Parkinson's disease (PD) is characterized by three main motor symptoms: bradykinesia, rigidity and tremor. PD is also associated with diverse non-motor symptoms that may develop in parallel or precede motor dysfunctions, ranging from autonomic system dysfunctions and impaired sensory perception to cognitive deficits and depression. Here, we examine the role of the progressive loss of dopaminergic transmission in behaviors related to the non-motor symptoms of PD in a mouse model of the disease (the TIF-IADATCreERT2 strain). We found that in the period from 5 to 12 weeks after the induction of a gradual loss of dopaminergic neurons, mild motor symptoms became detectable, including changes in the distance between paws while standing as well as the swing speed and step sequence. Male mutant mice showed no apparent changes in olfactory acuity, no anhedonia-like behaviors, and normal learning in an instrumental task; however, a pronounced increase in the number of operant responses performed was noted. Similarly, female mice with progressive dopaminergic neuron degeneration showed normal learning in the probabilistic reversal learning task and no loss of sweet-taste preference, but again, a robustly higher number of choices were performed in the task. In both males and females, the higher number of instrumental responses did not affect the accuracy or the fraction of rewarded responses. Taken together, these data reveal discrete, dopamine-dependent non-motor symptoms that emerge in the early stages of dopaminergic neuron degeneration.

3.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423792

RESUMO

The motor cortex comprises the primary descending circuits for flexible control of voluntary movements and is critically involved in motor skill learning. Motor skill learning is impaired in patients with Parkinson's disease, but the precise mechanisms of motor control and skill learning are still not well understood. Here we have used transgenic mice, electrophysiology, in situ hybridization, and neural tract-tracing methods to target genetically defined cell types expressing D1 and D2 dopamine receptors in the motor cortex. We observed that putative D1 and D2 dopamine receptor-expressing neurons (D1+ and D2+, respectively) are organized in highly segregated, nonoverlapping populations. Moreover, based on ex vivo patch-clamp recordings, we showed that D1+ and D2+ cells have distinct morphological and electrophysiological properties. Finally, we observed that chemogenetic inhibition of D2+, but not D1+, neurons disrupts skilled forelimb reaching in adult mice. Overall, these results demonstrate that dopamine receptor-expressing cells in the motor cortex are highly segregated and play a specialized role in manual dexterity.


Assuntos
Córtex Motor , Camundongos , Humanos , Animais , Córtex Motor/metabolismo , Receptores de Dopamina D1/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo , Corpo Estriado/metabolismo
4.
Pharmacol Rep ; 75(6): 1474-1487, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37725330

RESUMO

BACKGROUND: Parkinson's disease (PD) is a motor disorder characterized by the degeneration of dopaminergic neurons, putatively due to the accumulation of α-synuclein (α-syn) in Lewy bodies (LBs) in Substantia Nigra. PD is also associated with the formation of LBs in brain areas responsible for emotional and cognitive regulation such as the amygdala and prefrontal cortex, and concurrent depression prevalence in PD patients. The exact link between dopaminergic cell loss, α-syn aggregation, depression, and stress, a major depression risk factor, is unclear. Therefore, we aimed to explore the interplay between sensitivity to chronic stress and α-syn aggregation. METHODS: Bilateral injections of α-syn preformed fibrils (PFFs) into the striatum of C57Bl/6 J mice were used to induce α-syn aggregation. Three months after injections, animals were exposed to chronic social defeat stress. RESULTS: α-syn aggregation did not affect stress susceptibility but independently caused increased locomotor activity in the open field test, reduced anxiety in the light-dark box test, and increased active time in the tail suspension test. Ex vivo analysis revealed modest dopaminergic neuron loss in the substantia nigra and reduced dopaminergic innervation in the dorsal striatum in PFFs injected groups. α-Syn aggregates were prominent in the amygdala, prefrontal cortex, and substantia nigra, with minimal α-syn aggregation in the raphe nuclei and locus coeruleus. CONCLUSIONS: Progressive bilateral α-syn aggregation might lead to compensatory activity increase and alterations in emotionally regulated behavior, without affecting stress susceptibility. Understanding how α-syn aggregation and degeneration in specific brain structures contribute to depression and anxiety in PD patients requires further investigation.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo
5.
J Clin Med ; 12(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37629307

RESUMO

The incidence of metabolic syndrome (MetS) increases with age, especially in women. The role of microRNAs (miRs) in the regulation of metabolism is postulated. The aim of the study is to identify miRs that may be markers of MetS and to assess changes in miRs expression as a result of 10 and 20 whole-body cryotherapy treatments (WBC; 3 min, -120 °C) in postmenopausal women with MetS (M-60, BMI 30.56 ± 5.38 kg/m2), compared to healthy postmenopausal (H-60, BMI 25.57 ± 2.46 kg/m2) and healthy young women (H-20, BMI 22.90 ± 3.19 kg/m2). In a fasting state, before 1 WBC and after 10 WBCs, as well as 20 WBCs, the expression of miR-15a-5p, miR-21-5p, miR-23a-3p, miR-146a-5p, miR-197-3p, miR-223-3p, fasting blood glucose (FBG) and blood lipid profile were determined. miR-15a-5p and miR-21-5p were down-regulated in M-60, while miR-23a-3p and miR-197-3p were up-regulated, and miR-223-3p down-regulated in M-60 and H-60, compared to H-20. Significant positive correlations between up-regulated (mostly for miR-23-3p and miR-197-3p) and significant negative correlations between down-regulated (mostly for miR-15a-5p) miRs and markers of body composition as well as metabolic disorders were observed. After 20 WBCs, miR-15a-5p expression was up-regulated in all groups. In H-60, down-regulation of miR-197-3p expression occurred after 10 WBCs and 20 WBCs. Following 10 WBCs, FBG decreased in all groups, which intensified in M-60 post-20 WBCs. In our research, it has been shown that miR-23a-3p and miR-197-3p are accurate markers of MetS and MetS risk factors, while miR-15a-5p and miR-23a-3p are precise markers of body composition disorders. WBC is an effective treatment for up-regulating miR-15a-5p and lowering glucose levels in young and postmenopausal women and down-regulating miR-197-3p expression in postmenopausal women. It may be an adjunctive effective treatment method in MetS and hyperglycemia.

6.
Neurochem Int ; 155: 105302, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150790

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits caused by the loss of dopaminergic neurons in the substantia nigra (SN) and ventral tegmental area (VTA). However, clinical data revealed that not only the dopaminergic system is affected in PD. Postmortem studies showed degeneration of noradrenergic cells in the locus coeruleus (LC) to an even greater extent than that observed in the SN/VTA. Pharmacological models support the concept that modification of noradrenergic transmission can influence the PD-like phenotype induced by neurotoxins. Nevertheless, there are no existing data on animal models regarding the distant impact of noradrenergic degeneration on intact SN/VTA neurons. The aim of this study was to create a transgenic mouse model with endogenously evoked progressive degeneration restricted to noradrenergic neurons and investigate its long-term impact on the dopaminergic system. To this end, we selectively ablated the transcription initiation factor-IA (TIF-IA) in neurons expressing dopamine ß-hydroxylase (DBH) by the Cre-loxP system. This mutation mimics a condition of nucleolar stress affecting neuronal survival. TIF-IADbhCre mice were characterized by selective, progressive degeneration of noradrenergic neurons, followed by phenotypic alterations associated with sympathetic system impairment. Our studies did not show any loss of tyrosine hydroxylase (TH)-positive cells in the SN/VTA of mutant mice; however, we observed increased indices of oxidative stress, enhanced markers of glial cell activation, inflammatory processes and isolated degenerating cells positive for FluoroJade C. These results were supported by gene expression profiling of VTA and SN from TIF-IADbhCre mice, revealing that 34 out of 246 significantly regulated genes in the SN/VTA were related to PD. Overall, our results shed new light on the possible negative influence of noradrenergic degeneration on dopaminergic neurons, reinforcing the neuroprotective role of noradrenaline.


Assuntos
Mesencéfalo , Substância Negra , Animais , Neurônios Dopaminérgicos/metabolismo , Inflamação/metabolismo , Camundongos , Norepinefrina/metabolismo , Estresse Oxidativo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo
7.
Front Immunol ; 13: 1058204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618360

RESUMO

Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.


Assuntos
Buprenorfina , Quimiocinas C , Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/uso terapêutico , Morfina/farmacologia , Morfina/uso terapêutico , Buprenorfina/uso terapêutico , Animais de Laboratório , Receptores de Quimiocinas/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Integrinas/uso terapêutico , Quimiocinas C/genética
8.
Cell Death Dis ; 12(12): 1139, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880223

RESUMO

Transcriptional and cellular-stress surveillance deficits are hallmarks of Huntington's disease (HD), a fatal autosomal-dominant neurodegenerative disorder caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD are still unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo remains elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its prominent nucleolar localization. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases the distribution of mHTT in a disperse state in the nucleus, exacerbating motor deficits. We confirmed NPM1 delocalization in the gradually progressing zQ175 knock-in HD mouse model: in the striatum at a presymptomatic stage and in the skeletal muscle at an early symptomatic stage. In Huntington's patient skeletal muscle biopsies, we found a selective redistribution of NPM1, similar to that in the zQ175 model. Taken together, our study demonstrates that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identifies NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Camundongos , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
10.
Antioxidants (Basel) ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439532

RESUMO

Primary cilia (PC) are microtubule-based protrusions of the cell membrane transducing molecular signals during brain development. Here, we report that PC are required for maintenance of Substantia nigra (SN) dopaminergic (DA) neurons highly vulnerable in Parkinson's disease (PD). Targeted blockage of ciliogenesis in differentiated DA neurons impaired striato-nigral integrity in adult mice. The relative number of SN DA neurons displaying a typical auto-inhibition of spontaneous activity in response to dopamine was elevated under control metabolic conditions, but not under metabolic stress. Strikingly, in the absence of PC, the remaining SN DA neurons were less vulnerable to the PD neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP). Our data indicate conserved PC-dependent neuroadaptive responses to DA lesions in the striatum. Moreover, PC control the integrity and dopamine response of a subtype of SN DA neurons. These results reinforce the critical role of PC as sensors of metabolic stress in PD and other disorders of the dopamine system.

11.
Pharmacol Rep ; 73(4): 1179-1187, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34117630

RESUMO

BACKGROUND: Evidence indicates that Gα12, Gα13, and its downstream effectors, RhoA and Rac1, regulate neuronal morphology affected by stress. This study was aimed at investigating whether repeated stress influences the expression of proteins related to the Gα12/13 intracellular signaling pathway in selected brain regions sensitive to the effects of stress. Furthermore, the therapeutic impact of ß(1)adrenergic receptors (ß1AR) blockade was assessed. METHODS: Restraint stress (RS) model in mice (2 h/14 days) was used to assess prolonged stress effects on the mRNA expression of Gα12, Gα13, RhoA, Rac1 in the prefrontal cortex (PFC), hippocampus (HIP) and amygdala (AMY). In a separate study, applying RS model in rats (3-4 h/1 day or 14 days), we evaluated stress effects on the expression of Gα12, Gα11, Gαq, RhoA, RhoB, RhoC, Rac1/2/3 in the HIP. Betaxolol (BET), a selective ß1AR antagonist, was introduced (5 mg/kg/p.o./8-14 days) in the rat RS model to assess the role of ß1AR in stress effects. RT-qPCR and Western Blot were used for mRNA and protein assessments, respectively. RESULTS: Chronic RS decreased mRNA expression of Gα12 and increased mRNA for Rac1 in the PFC of mice. In the mice AMY, decreased mRNA expression of Gα12, Gα13 and RhoA was observed. Fourteen days of RS exposure increased RhoA protein level in the rats' HIP in the manner dependent on ß1AR activity. CONCLUSIONS: Together, these results suggest that repeated RS affects the expression of genes and proteins known to be engaged in neural plasticity, providing potential targets for further studies aimed at unraveling the molecular mechanisms of stress-related neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Restrição Física/fisiologia , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Front Immunol ; 10: 2198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616413

RESUMO

Recently, the role of CXCR2 in nociception has been noted. Our studies provide new evidence that the intrathecal administration of its CINC ligands (Cytokine-Induced Neutrophil Chemoattractant; CXCL1-3) induces pain-like behavior in naïve mice, and the effect occurring shortly after administration is associated with the neural location of CXCR2, as confirmed by immunofluorescence. RT-qPCR analysis showed, for the first time, raised levels of spinal CXCR2 after chronic constriction injury (CCI) of the sciatic nerve in rats. Originally, on day 2, we detected escalated levels of the spinal mRNA of all CINCs associated with enhancement of the protein level of CXCL3 lasting until day 7. Intrathecal administration of CXCL3 neutralizing antibody diminished neuropathic pain on day 7 after CCI. Interestingly, CXCL3 is produced in lipopolysaccharide-stimulated microglial, but not astroglial, primary cell cultures. We present the first evidence that chronic intrathecal administrations of the selective CXCR2 antagonist, NVP CXCR2 20, attenuate neuropathic pain symptoms and CXCL3 expression after CCI. Moreover, in naïve mice, this antagonist prevented CXCL3-induced hypersensitivity. However, NVP CXCR2 20 did not diminish glial activation, thus not enhancing morphine/buprenorphine analgesia. These results provide novel insight into the crucial role of CXCR2 in neuropathy based on CXCL3 modulation, which may become a potential therapeutic target in pain treatment.


Assuntos
Quimiocinas CXC/metabolismo , Neuralgia/tratamento farmacológico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Receptores de Interleucina-8B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Wistar , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Medula Espinal/metabolismo
13.
Pharmacol Rep ; 71(5): 753-761, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31351316

RESUMO

BACKGROUND: The transcription factor CREB and the neurotrophin BDNF are important mood regulators due to their profound role in controlling the neuronal plasticity. Our previously published results from transgenic mice functionally lacking CREB in chosen neural populations have shown that BDNF upregulation evoked by chronic treatment with fluoxetine seems to be dependent on CREB residing exclusively in serotonergic neurons. To further elucidate this observation, we focused on the representative signaling cascades engaged in the regulation of BDNF production. METHODS: The study was carried out on mice lacking CREB in noradrenergic (Creb1DBHCre) or serotonergic (Creb1TPH2CreERT2) neurons in CREM deficient background. Animals received fluoxetine (10 mg/kg, ip) or desipramine (20 mg/kg, ip) for 21 days. The expression of following proteins and their phosphorylated forms was assessed by Western blot: CREB, BDNF, CaMKIIα, ERK1/2. RESULTS: We showed that consistent with previously observed BDNF upregulation, chronic treatment with fluoxetine causes an increase in the pool of active CaMKIIα in w/t males, while in Creb1TPH2CreERT2 mutants, this effect ceased along with the observed decrease in ERK1/2 phosphorylation. These effects were region- and sex-specific. We did not observe a similar pattern of changes regarding the levels of BDNF expression and the CaMKIIα, ERK1/2 kinases in Creb1DBHCre mice exposed to desipramine. However, sex-dependent changes in the regulation of CaMKIIα and ERK1/2 activity were also observed. CONCLUSIONS: Our study highlights the pivotal role of CREB in response to antidepressants, emphasizing different sex-dependent vulnerabilities to particular drugs and the important impact of CREM on the effects of CREB deletion.


Assuntos
Neurônios Adrenérgicos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurônios Serotoninérgicos/metabolismo , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Desipramina/farmacologia , Feminino , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Caracteres Sexuais
14.
Front Mol Neurosci ; 12: 106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110473

RESUMO

Understanding underlying mechanisms of neurodegenerative diseases is fundamental to develop effective therapeutic intervention. Yet they remain largely elusive, but metabolic, and transcriptional dysregulation are common events. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylase, regulating transcription, and critical for the cellular adaptations to metabolic stress. SIRT1 regulates the transcription of ribosomal RNA (rRNA), connecting the energetic state with cell growth and function. The activity of the transcription initiation factor-IA (TIF-IA) is important for the transcriptional regulation of ribosomal DNA (rDNA) genes in the nucleolus, and is also sensitive to changes in the cellular energetic state. Moreover, TIF-IA is responsive to nutrient-deprivation, neurotrophic stimulation, and oxidative stress. Hence, both SIRT1 and TIF-IA connect changes in cellular stress with transcriptional regulation and metabolic adaptation. Moreover, they finely tune the activity of the transcription factor p53, maintain mitochondrial function, and oxidative stress responses. Here we reviewed and discussed evidence that SIRT1 and TIF-IA are regulated by shared pathways and their activities preserve neuronal homeostasis in response to metabolic stressors. We provide evidence that loss of rDNA transcription due to altered TIF-IA function alters SIRT1 expression and propose a model of interdependent feedback mechanisms. An imbalance of this signaling might be a critical common event in neurodegenerative diseases. In conclusion, we provide a novel perspective for the prediction of the therapeutic benefits of the modulation of SIRT1- and nucleolar-dependent pathways in metabolic and neurodegenerative diseases.

15.
Artigo em Inglês | MEDLINE | ID: mdl-30953677

RESUMO

Disturbances in fear-evoked signal transduction in the hippocampus (HP), the nuclei of the amygdala (AMY), and the prefrontal cortex (PFC) underlie anxiety-related disorders. However, the molecular mechanisms underlying these effects remain elusive. Heterotrimeric G proteins (GPs) are divided into the following four families based on the intracellular activity of their alpha subunit (Gα): Gα(s) proteins stimulate cyclic AMP (cAMP) generation, Gα(i/o) proteins inhibit the cAMP pathway, Gα(q/11) proteins increase the intracellular Ca++ concentration and the inositol trisphosphate level, and Gα(12/13) proteins activate monomeric GP-Rho. In the present study, we assessed the effects of a fear memory procedure on the mRNA expression of the Gα subunits of all four GP families in the HP, AMY and PFC. C57BL/6 J mice were subjected to a fear conditioning (FC) procedure followed by a contextual or cued fear memory test (CTX-R and CS-R, respectively). Morphine (MOR, 1 mg/kg/ip) was injected immediately after FC to prevent the fear consolidation process. Real-time quantitative PCR was used to measure the mRNA expression levels of Gα subunits at 1 h after FC, 24 h after FC, and 1 h after the CTX-R or CS-R. In the HP, the mRNA levels of Gα(s), Gα(12) and Gα(11) were higher at 1 h after training. Gα(s) levels were slightly lower when consolidation was stabilized and after the CS-R. The mRNA levels of Gα(12) were increased at 1 h after FC, returned to control levels at 24 h after FC and increased again with the CTX-R. The increase in the Gα(11) level persisted at 24 h after FC and after CTX-R. In the AMY, no specific changes were induced by FC. In the PFC, CTX-R was accompanied by a decrease in Gα(i/o) mRNA levels; however, only Gα(i2) downregulation was prevented by MOR treatment. Hence, the FC-evoked changes in Gα mRNA expression were observed mainly in the HP and connected primarily to contextual learning. These results suggest that the activation of signaling pathways by Gα(s) and Gα(12) is required to begin the fear memory consolidation process in the HP, while signal transduction via Gα(11) is implicated in the maintenance of fear consolidation. In the PFC, the downregulation of Gα(i2) appears to be related to the contextual learning of fear.


Assuntos
Encéfalo/metabolismo , Medo , Proteínas de Ligação ao GTP/metabolismo , Memória/efeitos dos fármacos , Morfina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Sinais (Psicologia) , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
16.
Sci Rep ; 9(1): 5262, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918302

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by motor deficits such as tremor, rigidity and bradykinesia. These symptoms are directly caused by the loss of dopaminergic neurons. However, a wealth of clinical evidence indicates that the dopaminergic system is not the only system affected in PD. Postmortem studies of brains from PD patients have revealed the degeneration of noradrenergic neurons in the locus coeruleus (LC) to the same or even greater extent than that observed in the dopaminergic neurons of substantia nigra (SN) and ventral tegmental area (VTA). Moreover, studies performed on rodent models suggest that enhancement of noradrenergic transmission may attenuate the PD-like phenotype induced by MPTP administration, a neurotoxin-based PD model. The aim of this study was to investigate whether chronic treatment with either of two compounds targeting the noradrenergic system (reboxetine or atipamezole) possess the ability to reduce the progression of a PD-like phenotype in a novel mouse model of progressive dopaminergic neurodegeneration induced by the genetic inhibition of rRNA synthesis in dopaminergic neurons, mimicking a PD-like phenotype. The results showed that reboxetine improved the parkinsonian phenotype associated with delayed progression of SN/VTA dopaminergic neurodegeneration and higher dopamine content in the striatum. Moreover, the alpha1-adrenergic agonist phenylephrine enhanced survival of TH+ neurons in primary cell cultures, supporting the putative neuroprotective effects of noradrenergic stimulation. Our results provide new insights regarding the possible influence of the noradrenergic system on dopaminergic neuron survival and strongly support the hypothesis regarding the neuroprotective role of noradrenaline.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Reboxetina/uso terapêutico , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Feminino , Imidazóis/uso terapêutico , Imuno-Histoquímica , Locus Cerúleo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Área Tegmentar Ventral/citologia
17.
Neurotox Res ; 36(1): 218, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30905052

RESUMO

Acknowledgments: This study was supported by the Grant No 2013/09/B/NZ7/04104 from the National Science Center (Poland).

18.
Forensic Toxicol ; 37(1): 45-58, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636982

RESUMO

PURPOSE: Tryptamine hallucinogen 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) is a serotonin transporter inhibitor with high affinity for serotonin 5-HT1A and 5-HT2A/C receptors. We showed previously that 5-MeO-DIPT in a single dose increased neurotransmitter release in brain regions of rats and elicited single- and double-strand DNA breaks. Herein we investigated the effects of repeated-intermittent 5-MeO-DIPT administration in adolescence on dopamine (DA), serotonin (5-HT) and glutamate release in brain regions of adult rats. Furthermore, we examined caspase-3 activity, oxidative DNA damage, the Gpx3, Sod1, Ht1a and Ht2a mRNA expression levels, and cell viability. METHODS: Neurotransmitter release was measured by microdialysis in freely moving animals. Caspase-3 activity was assessed colorimetrically, and oxidative DNA damage with the comet assay, while the Gpx3, Sod1, Ht1a and Ht2a mRNA expression levels were assessed by real-time polymerase chain reaction. Cell viability was studied in SH-SY5Y and Hep G2 cells by the MTT test. RESULTS: We observed changed responses of DA, 5-HT and glutamate neurons to a challenge dose of 5-MeO-DIPT when animals were treated repeatedly in adolescence with this hallucinogen. The basal extracellular levels of DA and 5-HT were decreased in the striatum and nucleus accumbens, while glutamate level was increased in the nucleus accumbens and frontal cortex. The damage of cortical DNA, increased Gpx3 and Sod1 mRNA expression and affected caspase-3 activity were also observed. Furthermore, decreased Ht1a and Ht2a mRNA expression in the frontal cortex and marked cytotoxicity of 5-MeO-DIPT were found. CONCLUSIONS: These results suggest that 5-MeO-DIPT given repeatedly during adolescence affects brain neurotransmission and shows neurotoxic potential observed in adult animals.

19.
Front Cell Neurosci ; 13: 565, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920562

RESUMO

Multiple pathomechanisms triggered by mutant Huntingtin (mHTT) underlie progressive degeneration of dopaminoceptive striatal neurons in Huntington's disease (HD). The primary cilium is a membrane compartment that functions as a hub for various pathways that are dysregulated in HD, for example, dopamine (DA) receptor transmission and the mechanistic target of rapamycin (mTOR) pathway. The roles of primary cilia (PC) for the maintenance of striatal neurons and in HD progression remain unknown. Here, we investigated PC defects in vulnerable striatal neurons in a progressive model of HD, the mHTT-expressing knock-in zQ175 mice. We found that PC length is affected in striatal but not in cortical neurons, in association with the accumulation of mHTT. To explore the role of PC, we generated conditional mutant mice lacking IFT88, a component of the anterograde intraflagellar transport-B complex lacking PC in dopaminoceptive neurons. This mutation preserved the expression of the dopamine 1 receptor (D1R), and the survival of striatal neurons, but resulted in a mild increase of DA metabolites in the striatum, suggesting an imbalance of ciliary DA receptor transmission. Conditional loss of PC in zQ175 mice did not trigger astrogliosis, however, mTOR signaling was more active and resulted in a more pronounced accumulation of nuclear inclusions containing mHTT. Further studies will be required of aged mice to determine the role of aberrant ciliary function in more advanced stages of HD.

20.
Int J Mol Sci ; 21(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892167

RESUMO

Pomegranate juice is a rich source of ellagitannins (ETs) believed to contribute to a wide range of pomegranate's health benefits. While a lot of experimental studies have been devoted to Alzheimer disease and hypoxic-ischemic brain injury, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. It is suggested that its neuroprotective effects are mediated by ETs-derived metabolites-urolithins. In this study, we examined the capability of pomegranate juice for protection against PD in a rat model of parkinsonism induced by rotenone. To evaluate its efficiency, assessment of postural instability, visualization of neurodegeneration, determination of oxidative damage to lipids and α-synuclein level, as well as markers of antioxidant defense status, inflammation, and apoptosis, were performed in the midbrain. We also check the presence of plausible active pomegranate ETs-derived metabolite, urolithin A, in the plasma and brain. Our results indicated that pomegranate juice treatment provided neuroprotection as evidenced by the postural stability improvement, enhancement of neuronal survival, its protection against oxidative damage and α-synuclein aggregation, the increase in mitochondrial aldehyde dehydrogenase activity, and maintenance of antiapoptotic Bcl-xL protein at the control level. In addition, we have provided evidence for the distribution of urolithin A to the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Cumarínicos/metabolismo , Taninos Hidrolisáveis/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Punica granatum/química , Animais , Antioxidantes/metabolismo , Frutas/química , Sucos de Frutas e Vegetais , Masculino , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...