Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 43(4): 961-76, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14960093

RESUMO

In the framework of the European Aerosol Research Lidar Network to Establish an Aerosol Climatology (EARLINET), 19 aerosol lidar systems from 11 European countries were compared. Aerosol extinction or backscatter coefficient profiles were measured by at least two systems for each comparison. Aerosol extinction coefficients were derived from Raman lidar measurements in the UV (351 or 355 nm), and aerosol backscatter profiles were calculated from pure elastic backscatter measurements at 351 or 355, 532, or 1064 nm. The results were compared for height ranges with high and low aerosol content. Some systems were additionally compared with sunphotometers and starphotometers. Predefined maximum deviations were used for quality control of the results. Lidar systems with results outside those limits could not meet the quality assurance criterion. The algorithms for deriving aerosol backscatter profiles from elastic lidar measurements were tested separately, and the results are described in Part 2 of this series of papers [Appl. Opt. 43, 977-989 (2004)]. In the end, all systems were quality assured, although some had to be modified to improve their performance. Typical deviations between aerosol backscatter profiles were 10% in the planetary boundary layer and 0.1 x 10(-6) m(-1) sr(-1) in the free troposphere.

2.
Appl Opt ; 43(4): 977-89, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14960094

RESUMO

An intercomparison of aerosol backscatter lidar algorithms was performed in 2001 within the framework of the European Aerosol Research Lidar Network to Establish an Aerosol Climatology (EARLINET). The objective of this research was to test the correctness of the algorithms and the influence of the lidar ratio used by the various lidar teams involved in the EARLINET for calculation of backscatter-coefficient profiles from the lidar signals. The exercise consisted of processing synthetic lidar signals of various degrees of difficulty. One of these profiles contained height-dependent lidar ratios to test the vertical influence of those profiles on the various retrieval algorithms. Furthermore, a realistic incomplete overlap of laser beam and receiver field of view was introduced to remind the teams to take great care in the nearest range to the lidar. The intercomparison was performed in three stages with increasing knowledge on the input parameters. First, only the lidar signals were distributed; this is the most realistic stage. Afterward the lidar ratio profiles and the reference values at calibration height were provided. The unknown height-dependent lidar ratio had the largest influence on the retrieval, whereas the unknown reference value was of minor importance. These results show the necessity of making additional independent measurements, which can provide us with a suitable approximation of the lidar ratio. The final stage proves in general, that the data evaluation schemes of the different groups of lidar systems work well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...