Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2984, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225697

RESUMO

Visualizing atomic-orbital degrees of freedom is a frontier challenge in scanned microscopy. Some types of orbital order are virtually imperceptible to normal scattering techniques because they do not reduce the overall crystal lattice symmetry. A good example is dxz/dyz (π,π) orbital order in tetragonal lattices. For enhanced detectability, here we consider the quasiparticle scattering interference (QPI) signature of such (π,π) orbital order in both normal and superconducting phases. The theory reveals that sublattice-specific QPI signatures generated by the orbital order should emerge strongly in the superconducting phase. Sublattice-resolved QPI visualization in superconducting CeCoIn5 then reveals two orthogonal QPI patterns at lattice-substitutional impurity atoms. We analyze the energy dependence of these two orthogonal QPI patterns and find the intensity peaked near E = 0, as predicted when such (π,π) orbital order is intertwined with d-wave superconductivity. Sublattice-resolved superconductive QPI techniques thus represent a new approach for study of hidden orbital order.

2.
Nano Lett ; 23(1): 140-147, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36450010

RESUMO

The iron-based superconductors are an ideal platform to reveal the enigma of the unconventional superconductivity and potential topological superconductivity. Among them, the monolayer Fe(Se,Te)/SrTiO3(001), which is proposed to be topological nontrivial, shows interface-enhanced high-temperature superconductivity in the two-dimensional limit. However, the experimental studies on the superconducting pairing mechanism of monolayer Fe(Se,Te) films are still limited. Here, by measuring the quasiparticle interference in monolayer Fe(Se,Te)/SrTiO3(001), we report the observation of the anisotropic structure of the large superconducting gap and the sign change of the superconducting gap on different electron pockets. The results are well consistent with the "bonding-antibonding" s±-wave pairing symmetry driven by spin fluctuations in conjunction with spin-orbit coupling. Our work is of basic significance not only for a unified superconducting formalism in the iron-based superconductors, but also for understanding of topological superconductivity in high-temperature superconductors.

3.
Phys Rev Lett ; 129(7): 077002, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018682

RESUMO

The discovery of superconductivity in infinite-layer nickelates has added a new family of materials to the fascinating growing class of unconventional superconductors. By incorporating the strongly correlated multiorbital nature of the low-energy electronic degrees of freedom, we compute the leading superconducting instability from magnetic fluctuations relevant for infinite-layer nickelates. Specifically, by properly including the doping dependence of the Ni d_{x^{2}-y^{2}} and d_{z^{2}} orbitals as well as the self-doping band, we uncover a transition from d-wave pairing symmetry to nodal s_{±} superconductivity, driven by strong fluctuations in the d_{z^{2}}-dominated orbital states. We discuss the properties of the resulting superconducting condensates in light of recent tunneling and penetration depth experiments probing the detailed superconducting gap structure of these materials.

4.
Nano Lett ; 22(8): 3245-3251, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416679

RESUMO

For multiband superconductors, the orbital multiplicity yields orbital differentiation in normal-state properties and can lead to orbital-selective spin-fluctuation Cooper pairing. The orbital-selective phenomenon has become increasingly pivotal in clarifying the pairing "enigma", particularly for multiband high-temperature superconductors. Meanwhile, in one-unit-cell (1-UC) FeSe/SrTiO3, since the standard electron-hole Fermi pocket nesting scenario is inapplicable, the actual pairing mechanism is subject to intense debate. Here, by measuring high-resolution Bogoliubov quasiparticle interference, we report observations of highly anisotropic magnetic Cooper pairing in 1-UC FeSe. Theoretically, it is important to incorporate orbitally selective effects of electronic correlations within a spin-fluctuation pairing calculation, where the dxy orbital becomes coherence-suppressed. The resulting pairing gap is compatible with the experimental findings, which suggests that high-Tc Cooper pairing with orbital selectivity applies to 2D-limit 1-UC FeSe. Our findings imply the general existence of orbital selectivity in iron-based superconductors and the universal significance of electron correlations in high-Tc superconductors.

5.
Nano Lett ; 20(5): 3284-3290, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32297750

RESUMO

We report the optical detection of magnons with a broad range of wavevectors in magnetic insulator Y3Fe5O12 thin films by proximate nitrogen-vacancy (NV) single-spin sensors. Through multimagnon scattering processes, the excited magnons generate fluctuating magnetic fields at the NV electron spin resonance frequencies, which accelerate the relaxation of NV spins. By measuring the variation of the emitted spin-dependent photoluminescence of the NV centers, magnons with variable wavevectors up to ∼5 × 107 m-1 can be optically accessed, providing an alternative perspective to reveal the underlying spin behaviors in magnetic systems. Our results highlight the significant opportunities offered by NV single-spin quantum sensors in exploring nanoscale spin dynamics of emergent spintronic materials.

6.
Nat Commun ; 11(1): 523, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988317

RESUMO

Bogoliubov Fermi surfaces are contours of zero-energy excitations that are protected in the superconducting state. Here we show that multiband superconductors with dominant spin singlet, intraband pairing of spin-1/2 electrons can undergo a transition to a state with Bogoliubov Fermi surfaces if spin-orbit coupling, interband pairing and time reversal symmetry breaking are also present. These latter effects may be small, but drive the transition to the topological state for appropriate nodal structure of the intra-band pair. Such a state should display nonzero zero-bias density of states and corresponding residual Sommerfeld coefficient as for a disordered nodal superconductor, but occurring even in the pure case. We present a model appropriate for iron-based superconductors where the topological transition associated with creation of a Bogoliubov Fermi surface can be studied. The model gives results that strongly resemble experiments on FeSe1-xSx across the nematic transition, where this ultranodal behavior may already have been observed.

7.
Phys Rev Lett ; 123(21): 217004, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809171

RESUMO

The interplay between unconventional Cooper pairing and quantum states associated with atomic scale defects is a frontier of research with many open questions. So far, only a few of the high-temperature superconductors allow this intricate physics to be studied in a widely tunable way. We use scanning tunneling microscopy to image the electronic impact of Co atoms on the ground state of the LiFe_{1-x}Co_{x}As system. We observe that impurities progressively suppress the global superconducting gap and introduce low energy states near the gap edge, with the superconductivity remaining in the strong-coupling limit. Unexpectedly, the fully opened gap evolves into a nodal state before the Cooper pair coherence is fully destroyed. Our systematic theoretical analysis shows that these new observations can be quantitatively understood by the nonmagnetic Born-limit scattering effect in an s±-wave superconductor, unveiling the driving force of the superconductor to metal quantum phase transition.

8.
Nat Mater ; 18(7): 709-716, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31110345

RESUMO

Superconductivity in FeSe emerges from a nematic phase that breaks four-fold rotational symmetry in the iron plane. This phase may arise from orbital ordering, spin fluctuations or hidden magnetic quadrupolar order. Here we use inelastic neutron scattering on a mosaic of single crystals of FeSe, detwinned by mounting on a BaFe2As2 substrate to demonstrate that spin excitations are most intense at the antiferromagnetic wave vectors QAF = (±1, 0) at low energies E = 6-11 meV in the normal state. This two-fold (C2) anisotropy is reduced at lower energies, 3-5 meV, indicating a gapped four-fold (C4) mode. In the superconducting state, however, the strong nematic anisotropy is again reflected in the spin resonance (E = 3.6 meV) at QAF with incommensurate scattering around 5-6 meV. Our results highlight the extreme electronic anisotropy of the nematic phase of FeSe and are consistent with a highly anisotropic superconducting gap driven by spin fluctuations.

9.
J Phys Condens Matter ; 30(2): 023001, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29240560

RESUMO

Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

10.
Phys Rev Lett ; 98(6): 067203, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17358981

RESUMO

The emergence of a finite staggered magnetization in quantum Heisenberg antiferromagnets subject to a uniform magnetic field can be viewed as Bose-Einstein condensation of magnons. Using nonperturbative results for the infrared behavior of the interacting Bose gas, we present exact results for the staggered spin-spin correlation functions of quantum antiferromagnets in a magnetic field at zero temperature. In particular, we show that in dimensions 1

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...