Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Bull Entomol Res ; 114(1): 88-98, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38327090

RESUMO

The European grapevine moth Lobesia botrana (Denis & Shiffermüller 1776) is an economically important pest of the vine-growing areas worldwide. Chemical insecticides have been used for its control; however, its resistance status is largely unknown in many regions. We monitored the susceptibility of several L. botrana populations from Greece and Turkey. In addition, based on RNAseq transcriptome analysis, we identified and phylogenetically classify the cytochrome P450 genes of L. botrana, as well as analysed target site sequences and looked for the presence of known resistance mutations. Resistance against chlorantraniliprole, alpha-cypermethrin, spinetoram, etofenprox, and acetamiprid was very low (below 2.5-fold in all cases, compared to a reference strain from Greece) in all populations from Greece that were included in the study. However, resistance against indoxacarb (4-30-fold), spinosad (5-59-fold), and deltamethrin (18-30 fold) was detected in the L. botrana populations from Turkey, compared to a reference population from Turkey. De novo transcriptome assembly and manual annotation, and subsequent PCR-based analysis of insecticide target sequences (i.e. voltage-gated sodium channel - VGSC: target of pyrethroids and oxadiazines; nicotinic acetylcholine receptor subunit a6 - nAChR_α6: target of spinosad; ryanodine receptor - RyR: target of diamides; glutamate-gated chloride channel - GluCl: target of avermectins and; acetylcholinesterase - AChE: target of organophosphates) showed the absence of known resistance mutations in all specimens from both countries. Finally, the L. botrana CYPome (116 genes) was manually analysed and phylogenetically characterised, to provide resources for future studies that will aim the analysis of metabolic resistance.


Assuntos
Inseticidas , Mariposas , Animais , Lobesia botrana , Resistência a Inseticidas/genética , Transcriptoma , Acetilcolinesterase/genética , Mariposas/genética , Inseticidas/farmacologia
2.
Insects ; 14(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37103208

RESUMO

The pepper fruit fly Atherigona orientalis (Schiner 1968) (Diptera: Muscidae) is a cosmopolitan tropical pest which has been recently recorded in several European countries. The biology of the pest has been primarily associated not only with decomposing fruits and vegetables, but even vertebrate and invertebrate carrion, dung and faeces. Relatively recently, A. orientalis has been reported as a primary pest of pepper fruits as well. In this short communication, we report, for the first time in Greece and, to the best of our knowledge, in Europe, cases of pepper fruit fly damage to pepper fruits in commercial greenhouse crops (in Crete in 2022). In this direction, possible implications and concerns regarding the occurrence of this pest in Crete are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...