Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 5(4): 269-75, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20457109

RESUMO

The PowerPlex(®) ESX 17 and ESI 17 Systems for short tandem repeat (STR) amplification were developed by the Promega Corporation to meet the European Network of Forensic Science Institutes (ENFSI) and the European DNA Profiling (EDNAP) Group recommendations for increasing the number of STR loci included in the European Standard Set (ESS). The PowerPlex ESX 17 and ESI 17 Systems utilize different PCR primer combinations to co-amplify the following 17 loci: D1S1656, D2S441, D2S1338, D3S1358, D8S1179, D10S1248, D12S391, D16S539, D18S51, D19S433, D21S11, D22S1045, FGA, TH01, vWA, SE33, and the sex-typing locus amelogenin. A total of 1443 U.S. population samples were evaluated with pre-commercialization versions of both kits. Stutter and heterozygote peak height ratios have been used to characterize kit performance. Typing results have been used to estimate the match probabilities provided by the chosen loci as well as in concordance studies. Full concordance between the typing results for the two kits was observed in 99.994% (49,055 out of 49,062) STR allele calls compared. All genotyping discrepancies were confirmed by DNA sequence analysis. As a result of these comparisons, a second forward primer for the D22S1045 locus has been added to the PowerPlex ESX 17 System to address a primer binding site mutation and the D1S1656 locus reverse primer in the PowerPlex ESI 17 System was modified to eliminate an amplification-efficiency reducing primer dimer.


Assuntos
Impressões Digitais de DNA/instrumentação , Bases de Dados de Ácidos Nucleicos , Reação em Cadeia da Polimerase , Sequências de Repetição em Tandem , Primers do DNA , Genética Populacional , Genótipo , Humanos , Mutação , Grupos Raciais/genética , Análise de Sequência de DNA
2.
Forensic Sci Int Genet ; 4(4): 257-64, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20457027

RESUMO

STR multiplexes remain the cornerstone of genotyping forensic samples. The PowerPlex 16 HS System contains the core CODIS loci: D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, CSF1PO, FGA, TH01, TPOX, and vWA. Additional loci amplified in the multiplex reaction are the sex-determinant locus, amelogenin, and two pentanucleotide STR loci, Penta D and Penta E. The PowerPlex 16 HS System is an updated version of the PowerPlex 16 System; while the primers and dyes remain unchanged, it introduces an enhanced buffer system that includes hot-start Taq DNA polymerase and ensures robust performance. Due to the modification of the reaction mix, a multi-laboratory developmental validation study was completed to document performance capabilities and limitations for the revised assay. Data within this validation was generated by eight laboratories and served as the basis for the following conclusions: genotyping of single-source samples was consistent across a large range of template DNA concentrations with most laboratories obtaining complete profiles at 62.5pg. Mixture analyses showed that over 90% of minor alleles were detected at 1:9 ratios. Optimum amplification cycle number was ultimately dependent on the sensitivity of the detection instrument and could be adjusted to accommodate a range of DNA template concentrations. Reaction conditions including volume and annealing temperature as well as the concentrations of primers, Taq DNA polymerase, and magnesium were shown to be optimal and able to withstand moderate variations without affecting multiplexed STR amplification. Finally, data from non-probative samples and concordance studies showed consistent results when comparing the PowerPlex 16 HS System with the PowerPlex 16 System as well as other commercially available systems.


Assuntos
Impressões Digitais de DNA , Reação em Cadeia da Polimerase/métodos , Sequências de Repetição em Tandem , Amelogenina/genética , Animais , Primers do DNA , Fluorescência , Humanos , Cloreto de Magnésio , Reprodutibilidade dos Testes , Especificidade da Espécie , Taq Polimerase
3.
Forensic Sci Int Genet ; 3(1): 14-21, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19083861

RESUMO

Multiplex human short tandem repeat analysis demands reliable DNA quantification to consistently produce interpretable genotypes. The Plexor HY System is a multiplex quantitative PCR assay to quantify total human and male DNA. We performed developmental validation of the Plexor HY System to demonstrate the performance capabilities and limitations of the assay for forensic applications. Validation studies examined: (a) human specificity, (b) sensitivity, (c) quantification of degraded DNA, (d) impact of inhibitors, (e) male/female mixture and Y-assay male specificity, (f) reproducibility and concordance and (g) population studies.


Assuntos
DNA/genética , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase/métodos , Animais , Cromossomos Humanos Y/genética , DNA/isolamento & purificação , DNA Fúngico/genética , Genética Forense/métodos , Genótipo , Humanos , Masculino , Mamíferos/genética , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Caracteres Sexuais , Cromossomo Y/genética
4.
Forensic Sci Int ; 151(1): 111-24, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16156007

RESUMO

Y chromosome-specific short tandem repeat (Y-STR) analysis has become another widely accepted tool for human identification. The PowerPlex Y System is a fluorescent multiplex that includes the 12 loci: DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439. This panel of markers incorporates the 9-locus European minimal haplotype (EMH) loci recommended by the International Y-STR User Group and the 11-locus set recommended by the Scientific Working Group on DNA Analysis Methods (SWGDAM). Described here are inter-laboratory results from 17 developmental validation studies of the PowerPlex Y System and include the following results: (a) samples distributed between laboratories and commercial standards produced expected and reproducible haplotypes; (b) use of common amplification and detection instruments were successfully demonstrated; (c) full profiles were obtained with standard 30 and 32 cycle amplification protocols and cycle number (24-28 cycles) could be modified to match different substrates (such as direct amplification of FTA paper); (d) complete profiles were observed with reaction volumes from 6.25 to 50 microL; (e) minimal impact was observed with variation of enzyme concentration; (f) full haplotypes were observed with 0.5-2x primer concentrations; however, relative yield between loci varied with concentration; (g) reduction of magnesium to 1mM (1.5 mM standard) resulted in minimal amplification, while only partial loss of yield was observed with 1.25 mM magnesium; (h) decreasing the annealing temperature by 2-4 degrees C did not generate artifacts or locus dropout and most laboratories observed full amplification with the annealing temperature increased by 2 degrees C and significant locus dropout with a 4 degrees C increase in annealing temperature; (i) amplification of individual loci with primers used in the multiplex produced the same alleles as observed with the multiplex amplification; (j) all laboratories observed full amplification with >or = 125 pg of male template with partial and/or complete profiles observed using 30-62.5 pg of DNA; (k) analysis of < or = 500 ng of female DNA did not yield amplification products; (l) the minor male component of a male/female mixture was observed with < or =1200-fold excess female DNA with the majority of alleles still observed with 10,000-fold excess female; (m) male/male mixtures produced full profiles from the minor contributor with 10-20-fold excess of the major contributor; (n) average stutter for each locus; (o) precision of sizing were determined; (p) human-specificity studies displayed amplification products only with some primate samples; and (q) reanalysis of 102 non-probative casework samples from 65 cases produced results consistent with original findings and in some instances additional identification of a minor male contributor to a male/female mixture was obtained. In general, the PowerPlex Y System was shown to have the sensitivity, specificity and reliability required for forensic DNA analysis.


Assuntos
Cromossomos Humanos Y , Impressões Digitais de DNA/normas , Reação em Cadeia da Polimerase/normas , Processos de Determinação Sexual , Sequências de Repetição em Tandem , Animais , Primers do DNA , Feminino , Marcadores Genéticos , Genótipo , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
5.
Forensic Sci Int ; 150(1): 1-15, 2005 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15837004

RESUMO

A total of 2443 male individuals, previously typed for the 13 CODIS STR loci, distributed across the five North American population groups African American, Asian, Caucasian, Hispanic, and Native American were typed for the Y-STR loci DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439 using the PowerPlex Y System. All population samples were highly polymorphic for the 12 Y-STR loci with the marker DYS385a/b being the most polymorphic across all sample populations. The Native American population groups demonstrated the lowest genetic diversity, most notably at the DYS393 and DYS437 loci. Almost all of the 12-locus haplotypes observed in the sample populations were represented only once in the database. Haplotype diversities were greater than 99.6% for the African Americans, Caucasians, Hispanics, and Asians. The Native Americans had the lowest haplotype diversities (Apaches, 97.0%; Navajo, 98.1%). Population substructure effects were greater for Y-haplotypes, compared with that for the autosomal loci. For the apportionment of variance for the 12 Y-STRs, the within sample population variation was the largest component (>98% for each major population group and approximately 97% in Native Americans), and the variance component contributed by the major population groups was less than the individual component, but much greater than among sample populations within a major group (11.79% versus 1.02% for African Americans/Caucasians/Hispanics and 15.35% versus 1.25% for all five major populations). When each major population is analyzed individually, the R(ST) values were low but showed significant among group heterogeneity. In 692 confirmed father-son pairs, 14 mutation events were observed with the average rate of 1.57x10(-3)/locus/generation (a 95% confidence bound of 0.83x10(-3) to 2.69x10(-3)). Since the Y-STR loci reside on the non-recombining region of the Y chromosome, the counting method is one approach suggested for conveying an estimate of the rarity of the Y-haplotype. Because the Y-STR loci are not all in disequilibrium to the same extent, the counting method is a very conservative approach. The data also support that autosomal STR frequencies can be multiplied by the upper bound frequency estimate of a Y-haplotype in the individual population group or those pooled into major population groups (i.e., Caucasian, African American, Hispanic, and Asian). These analyses support use of the haplotype population data for estimating Y-STR profile frequencies for populations residing in North America.


Assuntos
Cromossomos Humanos Y/genética , Haplótipos , Grupos Populacionais/genética , Sequências de Repetição em Tandem , Canadá , Genética Populacional , Humanos , Estados Unidos
6.
Forensic Sci Int ; 148(1): 1-14, 2005 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-15607584

RESUMO

Y chromosome-specific short tandem repeat (Y-STR) analysis has become another widely accepted tool for human identification. The PowerPlex Y System is a fluorescent multiplex that includes the 12 loci: DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439. This panel of markers incorporates the 9-locus European minimal haplotype (EMH) loci recommended by the International Y-STR User Group and the 11-locus set recommended by the Scientific Working Group on DNA Analysis Methods (SWGDAM). Described here are inter-laboratory results from 17 developmental validation studies of the PowerPlex Y System and include the following results: (a) samples distributed between laboratories and commercial standards produced expected and reproducible haplotypes; (b) use of common amplification and detection instruments were successfully demonstrated; (c) full profiles were obtained with standard 30 and 32 cycle amplification protocols and cycle number (24-28 cycles) could be modified to match different substrates (such as direct amplification of FTA paper); (d) complete profiles were observed with reaction volumes from 6.25 to 50 microL; (e) minimal impact was observed with variation of enzyme concentration; (f) full haplotypes were observed with 0.5-2x primer concentrations; however, relative yield between loci varied with concentration; (g) reduction of magnesium to 1mM (1.5 mM standard) resulted in minimal amplification, while only partial loss of yield was observed with 1.25 mM magnesium; (h) decreasing the annealing temperature by 2-4 degrees C did not generate artifacts or locus dropout and most laboratories observed full amplification with the annealing temperature increased by 2 degrees C and significant locus dropout with a 4 degrees C increase in annealing temperature; (i) amplification of individual loci with primers used in the multiplex produced the same alleles as observed with the multiplex amplification; (j) all laboratories observed full amplification with >or = 125 pg of male template with partial and/or complete profiles observed using 30-62.5 pg of DNA; (k) analysis of < or = 500 ng of female DNA did not yield amplification products; (l) the minor male component of a male/female mixture was observed with < or =1200-fold excess female DNA with the majority of alleles still observed with 10,000-fold excess female; (m) male/male mixtures produced full profiles from the minor contributor with 10-20-fold excess of the major contributor; (n) average stutter for each locus; (o) precision of sizing were determined; (p) human-specificity studies displayed amplification products only with some primate samples; and (q) reanalysis of 102 non-probative casework samples from 65 cases produced results consistent with original findings and in some instances additional identification of a minor male contributor to a male/female mixture was obtained. In general, the PowerPlex Y System was shown to have the sensitivity, specificity and reliability required for forensic DNA analysis.


Assuntos
Cromossomos Humanos Y , Impressões Digitais de DNA/normas , Reação em Cadeia da Polimerase/normas , Processos de Determinação Sexual , Sequências de Repetição em Tandem , Animais , Primers do DNA , Feminino , Marcadores Genéticos , Genótipo , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
7.
J Forensic Sci ; 47(4): 773-85, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12136984

RESUMO

STR multiplexes have been indispensable for the efficient genotyping of forensic samples. The PowerPlex 16 System contains the coreCODIS loci, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, CSF1PO, FGA, THOI, TPOX, vWA, the sex determinant locus, amelogenin, and two pentanucleotide STR loci, Penta D and Penta E. This multiplex satisfies the locus requirements for most national databases and is the most efficient currently available system due to its single PCR amplification. To provide the groundwork for judicial acceptance, including the publication of primer sequences, and to evaluate laboratory-to-laboratory variation, a developmental validation for casework on this commercially available system was performed in 24 laboratories and produced the following conclusions. Amplification was reliable on a variety of thermal cyclers and product could be analyzed on either an ABI PRISM 310 Genetic Analyzer or an ABI PRISM 377 DNA Sequencer. Genotyping using single source samples was consistent between 0.25 and 2 ng of input DNA template with a few laboratories obtaining complete genotypes at 0.0625 ng. However, heterozygote allele imbalance (<60% peak height balance) caused by stochastic effects was observed at a rate of 13% with 0.125 ng DNA and 22% at 0.0625 ng DNA. Mixture analyses were done using a total of 1 ng of DNA template. Most alleles were detected in mixtures of 4 to 1 and some minor alleles were detected in mixtures of 19 to 1. Optimum amplification cycle number was dependent on the sensitivity of the detection instrument used and could also be adjusted to accommodate larger amounts of DNA on solid supports such as FTA paper. Reaction conditions including volume, annealing temperature, and concentrations of primer, AmpliTaq Gold, and magnesium were shown to be optimal yet robust enough to withstand moderate variations without affecting genotype analysis. Environmental, matrix and standard source analyses revealed an ability to obtain complete genotypes in all sample types except those exposed to 80 degrees C for 12-48 days. Finally, comparison of genotype results from the PowerPlex 16 System with other commercially available systems on non-probative reference and forensic samples showed consistent results.


Assuntos
Impressões Digitais de DNA/métodos , Sequências de Repetição em Tandem/genética , Alelos , Calibragem , Primers do DNA , Medicina Legal/métodos , Humanos , Oligonucleotídeos , Reação em Cadeia da Polimerase , Valores de Referência , Sensibilidade e Especificidade , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...