Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(10): 105105, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33138562

RESUMO

This manuscript describes the development and operation of an apparatus for the measurement of steady-state and transient gas permeation through different types of solid materials with varying geometries. It is capable of operation from 293 K to 673 K and could theoretically be used with any non-corrosive gas or a mix of gases, although only hydrogen isotopes are used in the current study. A quadrupole mass spectrometer is used to measure permeation fluxes as low as 1011 molecules/s. This unique test setup allows for the simultaneous measurement of diffusivity, solubility, and permeability. Furthermore, varying the pressure in the fore-sample volume allows for tests of Sievert's law and can give information on surface effects.

2.
J Colloid Interface Sci ; 495: 130-139, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28193511

RESUMO

Adding nano-sized fillers to epoxy has proven to be an effective method for improving dielectric breakdown strength (DBS). Evidence suggests that dispersion state, as well as chemistry at the filler-matrix interface can play a crucial role in property enhancement. Herein we investigate the contribution of both filler dispersion and surface chemistry on the AC dielectric breakdown strength of silica-epoxy nanocomposites. Ligand engineering was used to synthesize bimodal ligands onto 15nm silica nanoparticles consisting of long epoxy compatible, poly(glycidyl methacrylate) (PGMA) chains, and short, π-conjugated, electroactive surface ligands. Surface initiated RAFT polymerization was used to synthesize multiple graft densities of PGMA chains, ultimately controlling the dispersion of the filler. Thiophene, anthracene, and terthiophene were employed as π-conjugated surface ligands that act as electron traps to mitigate avalanche breakdown. Investigation of the synthesized multifunctional nanoparticles was effective in defining the maximum particle spacing or free space length (Lf) that still leads to property enhancement, as well as giving insight into the effects of varying the electronic nature of the molecules at the interface on breakdown strength. Optimization of the investigated variables was shown to increase the AC dielectric breakdown strength of epoxy composites as much as 34% with only 2wt% silica loading.

3.
ACS Appl Mater Interfaces ; 6(9): 6005-21, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24476387

RESUMO

One key to optimizing the performance of polymer nanocomposites for high-tech applications is surface ligand engineering of the nanofiller, which has been used to either tune the nanofiller morphology or introduce additional functionalities. Ligand engineering can be relatively simple such as a single population of short molecules on the nanoparticle surface designed for matrix compatibility. It can also have complexity that includes bimodal (or multimodal) populations of ligands that enable relatively independent control of enthalpic and entropic interactions between the nanofiller and matrix as well as introduce additional functionality and dynamic control. In this Spotlight on Applications, we provide a brief review into the use of brush ligands to tune the thermodynamic interactions between nanofiller and matrix and then focus on the potential for surface ligand engineering to create exciting nanocomposites properties for optoelectronic and dielectric applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...