Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(19)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37830628

RESUMO

Monomers, dimers, and individual FOF1-ATP synthase subunits are, presumably, involved in the formation of the mitochondrial permeability transition pore (PTP), whose molecular structure, however, is still unknown. We hypothesized that, during the Ca2+-dependent assembly of a PTP complex, the F-ATP synthase (subunits) recruits mitochondrial proteins that do not interact or weakly interact with the F-ATP synthase under normal conditions. Therefore, we examined whether the PTP opening in mitochondria before the separation of supercomplexes via BN-PAGE will increase the channel stability and channel-forming capacity of isolated F-ATP synthase dimers and monomers in planar lipid membranes. Additionally, we studied the specific activity and the protein composition of F-ATP synthase dimers and monomers from rat liver and heart mitochondria before and after PTP opening. Against our expectations, preliminary PTP opening dramatically suppressed the high-conductance channel activity of F-ATP synthase dimers and monomers and decreased their specific "in-gel" activity. The decline in the channel-forming activity correlated with the reduced levels of as few as two proteins in the bands: methylmalonate-semialdehyde dehydrogenase and prohibitin 2. These results indicate that proteins co-migrating with the F-ATP synthase may be important players in PTP formation and stabilization.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Subunidades Proteicas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Trifosfato de Adenosina
2.
Biochemistry (Mosc) ; 88(1): 73-85, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068876

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine, MEL), secreted by the pineal gland, plays an important role in regulation of various functions in the human body. There is evidence that MEL exhibits antitumor effect in various types of cancer. We studied the combined effect of MEL and drugs from different pharmacological groups, such as cytarabine (CYT) and navitoclax (ABT-737), on the state of the pool of acute myeloid leukemia (AML) tumor cell using the MV4-11 cell line as model. The combined action of MEL with CYT or ABT-737 contributed to the decrease in proliferative activity of leukemic cells, decrease in the membrane potential of mitochondria, and increase in the production of reactive oxygen species (ROS) and cytosolic Ca2+. We have shown that introduction of MEL together with CYT or ABT-737 increases expression of the C/EBP homologous protein (CHOP) and the autophagy marker LC3A/B and decreases expression of the protein disulfide isomerase (PDI) and binding immunoglobulin protein (BIP), and, therefore, could modulate endoplasmic reticulum (ER) stress and initiate autophagy. The findings support an early suggestion that MEL is able to provide benefits for cancer treatment and be considered as an adjunct to the drugs used in cancer therapy.


Assuntos
Leucemia , Melatonina , Humanos , Melatonina/farmacologia , Melatonina/uso terapêutico , Nitrofenóis/farmacologia , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Estresse do Retículo Endoplasmático , Leucemia/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral
3.
Biochim Biophys Acta Gen Subj ; 1863(5): 771-783, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30763605

RESUMO

BACKGROUND: The opening of the permeability transition pore (PTP) in mitochondria plays a critical role in the pathogenesis of numerous diseases. Mitochondrial matrix pyridine nucleotides are potent regulators of the PTP, but the role of extramitochondrial nucleotides is unclear. METHODS: The PTP opening was explored in isolated mitochondria and mitochondria in permeabilized differentiated and undifferentiated cells in the presence of added NAD(P)(H) in combination with Mg2+, adenine nucleotides (AN), and the inhibitors of AN translocase (ANT), voltage-dependent anion channel (VDAC), and cyclophilin D. RESULTS: Added NAD(H) and AN, but not NADP(H), inhibited the PTP opening with comparable potency. PTP suppression required neither NAD(H) oxidation nor reduction. The protective effects of NAD(H) and cyclosporin A were synergistic, and the effects of NAD(H) and millimolar AN were additive. The conformation-specific ANT inhibitors were unable to cancel the protective effect of NADH even under total ANT inhibition. Besides, NAD(H) activated the efflux of mitochondrial AN via ANT. VDAC ligand (Mg2+) and blockers (G3139 and 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid) potentiated and attenuated the protective effect of NAD(H), respectively. However, in embryonic and cancer (undifferentiated) cells, in contrast to isolated differentiated hepatocytes and cardiocytes, the suppression of PTP opening by NADH was negligible though all cells tested possessed a full set of VDAC isoforms. CONCLUSIONS: The study revealed a novel mechanism of PTP regulation by external (cytosolic) NAD(H) through the allosteric site in the OM or the intermembrane space. GENERAL SIGNIFICANCE: The mechanism might contribute to the resistance of differentiated cells under different pathological conditions including ischemia/reperfusion.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NAD/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/isolamento & purificação , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...