Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 226(3-4): 137-46, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16333572

RESUMO

The determination of protein-protein interactions is becoming more and more important in the molecular analysis of signal transduction chains. To this purpose the application of a manageable and simple assay in an appropriate biological system is of major concern. Bimolecular fluorescence complementation (BiFC) is a novel method to analyze protein-protein interactions in vivo. The assay is based on the observation that N- and C-terminal subfragments of the yellow-fluorescent protein (YFP) can only reconstitute a functional fluorophore when they are brought into tight contact. Thus, proteins can be fused to the YFP subfragments and the interaction of the fusion proteins can be monitored by epifluorescence microscopy. Pairs of interacting proteins were tested after transient cotransfection in etiolated mustard seedlings, which is a well characterized plant model system for light signal transduction. BiFC could be demonstrated with the F-box protein EID1 (empfindlicher im dunkelroten Licht 1) and the Arabidopsis S-phase kinase-related protein 1 (ASK1). The interaction of both proteins was specific and strictly dependent on the presence of an intact F-box domain. Our studies also demonstrate that etiolated mustard seedlings provide a versatile transient assay system to study light-induced subcellular localization events.


Assuntos
Proteínas F-Box/metabolismo , Luz , Plantas/metabolismo , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Luminescentes , Dados de Sequência Molecular , Mostardeira/genética , Petroselinum/genética , Fitocromo A/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Plântula/genética , Transdução de Sinais , Espectrometria de Fluorescência/métodos , Transfecção , Técnicas do Sistema de Duplo-Híbrido
2.
Genes Dev ; 15(8): 939-44, 2001 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11316788

RESUMO

To perceive red and far-red light, plants have evolved specific photoreceptors called phytochromes. Even though the spectral properties of all phytochromes are very similar, they show a distinct mode of action. Here we describe EID1, a negatively acting component of the signaling cascade that shifts the responsiveness of the phytochrome A (phyA) signaling system associated with hypocotyl elongation from red to far-red wavelengths. EID1 is a novel nuclear F-box protein that contains a leucine zipper whose integrity is necessary for its biological function. EID1 most probably acts by targeting activated components of the phyA signaling pathway to ubiquitin-dependent proteolysis.


Assuntos
Proteínas de Arabidopsis , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Fitocromo/genética , Fitocromo/fisiologia , Transdução de Sinais , Alelos , Sequência de Aminoácidos , Sequência de Bases , Núcleo Celular/metabolismo , Clonagem Molecular , Proteínas de Ligação a DNA/química , Proteínas F-Box , Genes Recessivos , Proteínas de Fluorescência Verde , Zíper de Leucina , Luz , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Fenótipo , Fitocromo A , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas Ligases SKP Culina F-Box , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido
3.
Plant J ; 22(3): 177-86, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10849336

RESUMO

Photoreversibility, reversion of the inductive effect of a brief red light pulse by a subsequent far-red light pulse, is a property of photoresponses regulated by the plant photoreceptor phytochrome B (phyB). We screened for mutants with impaired photoreversibility to gain better insight into the phyB-specific signalling cascade. The phenotype of the mutant described is caused by a single amino acid exchange in a phyB subdomain that is highly conserved in all phytochromes but whose functional significance was unknown. The mutated phyB showed a slower dark reversion but no major alterations in its spectral properties. In addition to its loss of photoreversibility, the mutant also exhibited a hypersensitivity towards continuous red-light irradiation and an altered phenotype of adult plants under short-day conditions.


Assuntos
Luz , Mutação , Células Fotorreceptoras , Fitocromo/genética , Fatores de Transcrição , Alelos , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Dados de Sequência Molecular , Fenótipo , Fitocromo/química , Fitocromo/metabolismo , Fitocromo B , Tolerância a Radiação , Homologia de Sequência de Aminoácidos
4.
Plant Cell ; 12(4): 547-58, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10760243

RESUMO

To identify specific mutants for components of phytochrome A (phyA) signaling in Arabidopsis, we established a light program consisting of multiple treatments with alternating red and far-red light. In wild-type seedlings, irradiation with multiple red light pulses can reduce the amount of phyA, which in turn decreases the high-irradiance responses (HIRs) mediated by the subsequent treatments with far-red light. Our mutants were able to avoid this red light-dependent reduction of the HIR. Here, we describe eid1, a new recessive mutant with increased sensitivity to far-red light. The eid1 mutation maps to the top of chromosome 4. The mutants showed no change in phenotype in darkness or under continuous white light, but they exhibited an increased sensitivity to red light and an increased persistence of HIR during prolonged dark phases after multiple short pulses of far-red light. The eid1 seedlings accumulated normal amounts of phytochrome and showed no alterations in the degradation or de novo synthesis of phyA. The expression of the Eid1 phenotype requires the presence of phyA. Our data provide evidence that EID1 is a negatively acting component in the phyA-dependent HIR-signaling pathway.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Genes de Plantas/genética , Luz , Células Fotorreceptoras , Fitocromo/metabolismo , Fatores de Transcrição , Antocianinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Mapeamento Cromossômico , Cromossomos/genética , Cruzamentos Genéticos , Escuridão , Epistasia Genética , Deleção de Genes , Teste de Complementação Genética , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/fisiologia , Modelos Biológicos , Mutação , Fenótipo , Fitocromo/biossíntese , Fitocromo/genética , Fitocromo A , Fitocromo B , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Transdução de Sinais
5.
J Biol Chem ; 274(1): 354-9, 1999 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-9867850

RESUMO

Phytochromes are plant photoreceptors that play a major role in photomorphogenesis. Two members of the phytochrome family have been characterized in some detail. Phytochrome A, which controls very low fluence and high irradiance responses, is rapidly degraded in the light, forms sequestered areas of phytochrome (SAPs), and does not exhibit dark reversion in monocotyledonous seedlings. Phytochrome B mediates red/far-red reversible responses, is stable in the light, and does not form SAPs. We report on the behavior in yeast of the phytochrome apoproteins of rice PHYA, tobacco PHYB, and chimeric PHYAB and PHYBA and on the behavior of the respective holoprotein adducts after assembly with phycocyanobilin chromophore (PHY*). SAP-like formation in yeast was not observed for PHYB, but was detectable for PHYA, PHYAB, and PHYBA. Rice PHYA* did not undergo dark reversion in yeast. Surprisingly, all other tested phytochrome constructs did exhibit dark reversion, including chimeric phytochromes with a short N-terminal part of tobacco PHYB or parsley PHYA fused to rice PHYA. Furthermore, the proportion of phytochrome undergoing dark reversion and the rate of reversion were increased for both the N terminus-swapped constructs and PHYBA*. These results are discussed with respect to structure/function analysis of phytochromes A and B.


Assuntos
Fitocromo/química , Proteínas Recombinantes de Fusão/química , Saccharomyces cerevisiae/genética , Clonagem Molecular , Escuridão , Cinética , Fitocromo/genética , Proteínas Recombinantes de Fusão/genética , Análise Espectral
6.
Plant Mol Biol ; 28(2): 219-29, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7599308

RESUMO

The expression of chalcone synthase (CHS) genes, which encode the first enzyme of the flavonoid pathway, is under developmental control as well as affected by external stimuli such as light. Varying fragments of the 1 kb upstream region of the CHS1 gene from white mustard (Sinapis alba L.) were fused to the GUS-coding region, and the light-regulated expression of these constructs was analysed in transgenic Arabidopsis and tobacco plants. Studies performed with Arabidopsis seedlings indicate the presence of two elements within the CHS1 promoter mediating light responses via different photoreceptors. One element, located about 150 bp upstream of the transcription start site, is homologous to Unit 1 of the parsley CHS gene, the second, far more upstream element carries sequences similar to Unit 2 of the same gene. Detailed studies on Unit 1-driven expression indicate that this element transfers the expression characteristics of the original gene to both Arabidopsis and tobacco. Although the expression characteristics of Unit 1 are indistinguishable from those of the full-length promoter within the same species, we observed differences in mustard CHS promoter regulation between Arabidopsis and tobacco plants transgenic for the identical construct. The difference in photoreceptor usage by the same promoter element in different transgenic species (Unit 1 from mustard in Arabidopsis vs. tobacco) was also observed for different but homologous promoter elements in the same transgenic species (Unit 1 from mustard and parsley in tobacco). We therefore conclude that the same promoter and even the same promoter element (Unit 1) can mediate different spatial patterns of expression and modes of light regulation in different transgenic species.


Assuntos
Aciltransferases/genética , Regulação da Expressão Gênica de Plantas , Mostardeira/genética , Mostardeira/efeitos da radiação , Plantas Medicinais , Regiões Promotoras Genéticas/genética , Aciltransferases/biossíntese , Arabidopsis/genética , Northern Blotting , Análise Mutacional de DNA , Genes Reporter , Luz , Mostardeira/enzimologia , Plantas Geneticamente Modificadas , Plantas Tóxicas , RNA Mensageiro/análise , Proteínas Recombinantes de Fusão/biossíntese , Deleção de Sequência , Transdução de Sinais , Especificidade da Espécie , Nicotiana/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA