Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nucleic Acids Res ; 45(19): 10969-10977, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28981809

RESUMO

Covalent attachment of a synthetic triantennary N-acetylagalactosamine (GalNAc) ligand to chemically modified siRNA has enabled asialoglycoprotein (ASGPR)-mediated targeted delivery of therapeutically active siRNAs to hepatocytes in vivo. This approach has become transformative for the delivery of RNAi therapeutics as well as other classes of investigational oligonucleotide therapeutics to the liver. For efficient functional delivery of intact drug into the desired subcellular compartment, however, it is critical that the nucleic acids are stabilized against nucleolytic degradation. Here, we compared two siRNAs of the same sequence but with different modification pattern resulting in different degrees of protection against nuclease activity. In vitro stability studies in different biological matrices show that 5'-exonuclease is the most prevalent nuclease activity in endo-lysosomal compartments and that additional stabilization in the 5'-regions of both siRNA strands significantly enhances the overall metabolic stability of GalNAc-siRNA conjugates. In good agreement with in vitro findings, the enhanced stability translated into substantially improved liver exposure, gene silencing efficacy and duration of effect in mice. Follow-up studies with a second set of conjugates targeting a different transcript confirmed the previous results, provided additional insights into kinetics of RISC loading and demonstrated excellent translation to non-human primates.


Assuntos
Acetilgalactosamina/farmacocinética , Rim/metabolismo , Fígado/metabolismo , RNA Interferente Pequeno/farmacocinética , Acetilgalactosamina/administração & dosagem , Acetilgalactosamina/metabolismo , Animais , Área Sob a Curva , Sistemas de Liberação de Medicamentos/métodos , Humanos , Fígado/citologia , Masculino , Taxa de Depuração Metabólica , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1033-1034: 9-16, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27517522

RESUMO

Trehalose is an important disaccharide that is used as a cellular protectant by many different organisms, helping these organisms better survive extreme conditions, such as dehydration, oxidative stress, and freezing temperatures. Methods to detect and accurately measure trehalose from different organisms will help us gain a better understanding of the mechanisms behind trehalose's ability to act as a cellular protectant. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay using selected reaction monitoring mode for the detection and quantification of trehalose using maltose as an internal standard has been developed. This assay uses a commercially available LC column for trehalose separation and a standard triple quadrupole mass spectrometer, thus allowing many scientists to take advantage of this simple assay. The calibration curve from 3 to 100µM trehalose was fit best by a single polynomial. This LC-MS/MS assay directly detects and accurately quantifies trehalose, with an instrument limit of detection (LOD) that is 2-1000 times more sensitive than the most commonly-used assays for trehalose detection and quantification. Furthermore, this assay was used to detect and quantify endogenous trehalose produced by Escherichia coli (E. coli) cells, which were found to have an intracellular concentration of 8.5±0.9mM trehalose. This method thus shows promise for the reliable detection and quantification of trehalose from different biological sources.


Assuntos
Cromatografia Líquida/métodos , Substâncias Protetoras/análise , Espectrometria de Massas em Tandem/métodos , Trealose/análise , Escherichia coli/química , Escherichia coli/metabolismo , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
4.
ACS Chem Biol ; 10(5): 1181-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25730476

RESUMO

Asialoglycoprotein receptor (ASGPR) mediated delivery of triantennary N-acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) to hepatocytes is a promising paradigm for RNAi therapeutics. Robust and durable gene silencing upon subcutaneous administration at therapeutically acceptable dose levels resulted in the advancement of GalNAc-conjugated oligonucleotide-based drugs into preclinical and clinical developments. To systematically evaluate the effect of display and positioning of the GalNAc moiety within the siRNA duplex on ASGPR binding and RNAi activity, nucleotides carrying monovalent GalNAc were designed. Evaluation of clustered and dispersed incorporation of GalNAc units to the sense (S) strand indicated that sugar proximity is critical for ASGPR recognition, and location of the clustered ligand impacts the intrinsic potency of the siRNA. An array of nucleosidic GalNAc monomers resembling a trivalent ligand at or near the 3' end of the S strand retained in vitro and in vivo siRNA activity, similar to the parent conjugate design. This work demonstrates the utility of simple, nucleotide-based, cost-effective siRNA-GalNAc conjugation strategies.


Assuntos
Acetilgalactosamina/metabolismo , Inativação Gênica , Hepatócitos/metabolismo , Nucleosídeos/metabolismo , RNA Interferente Pequeno/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...