Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36979907

RESUMO

Treatment options for colorectal cancer (CRC), especially in advanced stages are still insufficient. There, the discovery of Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) was a bright spot. However, most cancers show resistance toward apoptotic signals. Cyclin-dependent kinase 9 (CDK9) plays a crucial role in cell cycle progression in most tissues. We recently demonstrated the role of CDK9 in mediating TRAIL resistance. In this work, we investigated the role of CDK9 in colorectal cancer. Immunohistochemical analysis of CDK9 expression in cancer and normal tissues of CRC specimens was performed. The effect of selective CDK9 inhibition in combination with TRAIL on CRC cells was analyzed via cell viability, colony formation, and induction of apoptosis by flow cytometry. The mechanism of action was conducted via western blotting. We now have confirmed overexpression of CDK9 in cancer tissues, with low expression associated with poorer survival in a subset of CRC patients. In-vitro, CDK9 inhibition could strongly promote TRAIL-induced cell death in TRAIL-resistant CRC cells. Mechanistically, CDK9 inhibition induced apoptosis by downregulation of antiapoptotic proteins, myeloid leukemia cell differentiation protein 1 (Mcl-1) and FLICE-inhibitory protein (c-FLIP). Overall, we identified CDK9 as a prognostic marker and combined CDK9 inhibition and TRAIL as a novel and promising therapeutic approaches for colorectal cancer.

2.
Cell Death Differ ; 29(3): 492-503, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34535764

RESUMO

Primary or acquired therapy resistance is a major obstacle to the effective treatment of cancer. Resistance to apoptosis has long been thought to contribute to therapy resistance. We show here that recombinant TRAIL and CDK9 inhibition cooperate in killing cells derived from a broad range of cancers, importantly without inducing detectable adverse events. Remarkably, the combination of TRAIL with CDK9 inhibition was also highly effective on cancers resistant to both, standard-of-care chemotherapy and various targeted therapeutic approaches. Dynamic BH3 profiling revealed that, mechanistically, combining TRAIL with CDK9 inhibition induced a drastic increase in the mitochondrial priming of cancer cells. Intriguingly, this increase occurred irrespective of whether the cancer cells were sensitive or resistant to chemo- or targeted therapy. We conclude that this pro-apoptotic combination therapy has the potential to serve as a highly effective new treatment option for a variety of different cancers. Notably, this includes cancers that are resistant to currently available treatment modalities.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Mitocôndrias , Neoplasias/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
3.
Anticancer Res ; 41(12): 5973-5985, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34848451

RESUMO

BACKGROUND/AIM: This study was designed to analyse the effects of the novel, orally bioavailable CDK9-inhibitor Atuveciclib (BAY 1143572) in combination with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) on pancreatic ductal adenocarcinoma (PDAC) cancer cells. MATERIALS AND METHODS: To assess the effect of combinatorial use of atuveciclib and TRAIL on pancreatic cancer cells, we used an MTT assay, colony formation assay, flow cytometry, and western blot analysis. RESULTS: Atuveciclib combined with TRAIL significantly reduced the viability of pancreatic cancer cells and their colony formation potential by inducing apoptosis and cell-cycle arrest. Atuveciclib sensitised PDAC cells to TRAIL-induced cell death through the concomitant suppression of cFlip and Mcl-1. A gemcitabine-resistant PDAC cell-line and patient-derived xenograft (PDX) cell lines were also suppressed by this combinatorial approach. CONCLUSION: This study provides the basis for further preclinical and clinical evaluation of combined treatment with atuveciclib and TRAIL.


Assuntos
Apoptose/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Triazinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
4.
Cancers (Basel) ; 12(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722137

RESUMO

S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.

5.
Cancers (Basel) ; 11(4)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935038

RESUMO

In the late 1990s, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-family, started receiving much attention for its potential in cancer therapy, due to its capacity to induce apoptosis selectively in tumour cells in vivo. TRAIL binds to its membrane-bound death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5) inducing the formation of a death-inducing signalling complex (DISC) thereby activating the apoptotic cascade. The ability of TRAIL to also induce apoptosis independently of p53 makes TRAIL a promising anticancer agent, especially in p53-mutated tumour entities. Thus, several so-called TRAIL receptor agonists (TRAs) were developed. Unfortunately, clinical testing of these TRAs did not reveal any significant anticancer activity, presumably due to inherent or acquired TRAIL resistance of most primary tumour cells. Since the potential power of TRAIL-based therapies still lies in TRAIL's explicit cancer cell-selectivity, a desirable approach going forward for TRAIL-based cancer therapy is the identification of substances that sensitise tumour cells for TRAIL-induced apoptosis while sparing normal cells. Numerous of such TRAIL-sensitising strategies have been identified within the last decades. However, many of these approaches have not been verified in animal models, and therefore potential toxicity of these approaches has not been taken into consideration. Here, we critically summarise and discuss the status quo of TRAIL signalling in cancer cells and strategies to force tumour cells into undergoing apoptosis triggered by TRAIL as a cancer therapeutic approach. Moreover, we provide an overview and outlook on innovative and promising future TRAIL-based therapeutic strategies.

6.
Int J Mol Sci ; 19(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340359

RESUMO

The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Ciclo Celular/genética , Ensaios Clínicos como Assunto , Quinases Ciclina-Dependentes/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Família Multigênica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Transcrição Gênica , Neoplasias Pancreáticas
7.
Cancers (Basel) ; 10(3)2018 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-29562636

RESUMO

Despite recent advances in oncology, diagnosis, and therapy, treatment of pancreatic ductal adenocarcinoma (PDAC) is still exceedingly challenging. PDAC remains the fourth leading cause of cancer-related deaths worldwide. Poor prognosis is due to the aggressive growth behavior with early invasion and distant metastasis, chemoresistance, and a current lack of adequate screening methods for early detection. Consequently, novel therapeutic approaches are urgently needed. Many hopes for cancer treatment have been placed in the death ligand tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) since it was reported to induce apoptosis selectively in tumor cells in vitro and in vivo. TRAIL triggers apoptosis through binding of the trans-membrane death receptors TRAIL receptor 1 (TRAIL-R1) also death receptor 4 (DR4) and TRAIL receptor 2 (TRAIL-R2) also death receptor 5 (DR5) thereby inducing the formation of the death-inducing signaling complex (DISC) and activation of the apoptotic cascade. Unlike chemotherapeutics, TRAIL was shown to be able to induce apoptosis in a p53-independent manner, making TRAIL a promising anticancer approach for p53-mutated tumors. These cancer-selective traits of TRAIL led to the development of TRAIL-R agonists, categorized into either recombinant variants of TRAIL or agonistic antibodies against TRAIL-R1 or TRAIL-R2. However, clinical trials making use of these agonists in various tumor entities including pancreatic cancer were disappointing so far. This is thought to be caused by TRAIL resistance of numerous primary tumor cells, an insufficient agonistic activity of the drug candidates tested, and a lack of suitable biomarkers for patient stratification. Nevertheless, recently gained knowledge on the biology of the TRAIL-TRAIL-R system might now provide the chance to overcome intrinsic or acquired resistance against TRAIL and TRAIL-R agonists. In this review, we summarize the status quo of clinical studies involving TRAIL-R agonists for the treatment of pancreatic cancer and critically discuss the suitability of utilizing the TRAIL-TRAIL-R system for successful treatment.

8.
BMC Cancer ; 18(1): 140, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409464

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the fourth leading cause of cancer related deaths worldwide and prognosis in advanced tumor stage still remains poor. Since CK1 isoforms have been reported to be deregulated in several tumor entities CK1 has emerged as a novel drug target in cancer therapy. In this study we set out to investigate whether CK1α might have the potential to serve as prognostic marker. METHODS: CK1α RNA and protein expression levels in healthy and tumor tissue of CRC patients were analyzed using quantitative real-time PCR and Western Blot analysis, respectively. Prognostic relevance was investigated by correlating obtained CK1α expression levels with patients' survival rate generating Kaplan-Meier survival plots. RESULTS: It could be shown that CK1α is overexpressed in colorectal tumor tissue compared to normal tissue and CK1α overexpression in tumor tissue correlates with poor survival in CRC patients. Results become more significant when only considering patients with high-grade tumors, as well as patients assigned to UICC II and UICC III stage. Furthermore, Cox regression analysis revealed that CK1α is an independent prognostic factor. In addition, tumors expressing decreased levels of the kinase reveal positive effects on overall survival when localized in the right colon compared to those in the left side. CONCLUSION: In summary, this study provides evidence for the first time that CK1α RNA levels might serve as prognostic marker for CRC.


Assuntos
Biomarcadores Tumorais/genética , Caseína Quinase Ialfa/genética , Neoplasias Colorretais/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Caseína Quinase Ialfa/metabolismo , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico
9.
Tumour Biol ; 39(2): 1010428317694304, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28231737

RESUMO

Despite recent advances in diagnosis and therapy, prognosis of pancreatic cancer still remains very poor. Besides valid prognostic markers, novel therapeutic approaches are urgently needed. The family of cyclin-dependent kinases comprises 20 kinases which contribute to malignancy by promoting proliferation, migration, invasion, and apoptotic resistance of cancer cells. In this work, we investigated the role of CDK9 in pancreatic cancer. Immunohistochemical analysis of CDK9 expression in tumor and normal tissue of pancreatic cancer patients revealed an overexpression of CDK9 in pancreatic cancer tissue. In addition, high CDK9 expression in tumor tissue is associated with significantly shortened survival, especially in well-differentiated tumors. Moreover, the therapeutic potential of selective CDK9 inhibition on pancreatic cancer cells was evaluated by analysis of cell viability, long-term survival, and induction of apoptosis and characterized by western blotting and flow cytometry. Pharmacological CDK9 inhibition by SNS-032 drastically reduced cell viability in pancreatic cancer cells and potently suppressed long-term survival. Analyzing the mechanism of action revealed that CDK9 inhibition induced apoptosis and cell cycle arrest in a time-dependent manner by suppression of anti-apoptotic proteins. Furthermore, CDK9 inhibition potently enhances the therapeutic effect of chemotherapeutics in pancreatic cancer cells. In conclusion, we identified CDK9 as a negative prognostic marker in pancreatic cancer. Furthermore, pharmacological CDK9 inhibition is a novel and promising therapeutic approach for pancreatic cancer.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma Ductal Pancreático/enzimologia , Quinase 9 Dependente de Ciclina/biossíntese , Neoplasias Pancreáticas/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia
10.
Tumour Biol ; 37(7): 8731-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26738869

RESUMO

Cancers arising from the large intestine or rectum are called colorectal cancer (CRC) and represent the fourth leading cause of cancer-related death worldwide. Since casein kinase 1 (CK1) isoforms are involved in many cellular processes and have been reported to be deregulated in various tumor entities, CK1 has become an interesting drug target. In this study, we examined the potential of CK1δ expression levels in tumor tissue of CRC patients as a prognostic biomarker. We show by quantitative RNA expression analyses that decreased CK1δ expression levels in tumor tissue predict prolonged survival rates. Random sampling of CK1δ stained tumor tissue indicates that CK1δ gene expression corresponds with CK1δ protein expression. Especially in low grade (grade 1, grade 2) and in UICC II/III classified tumors decreased CK1δ RNA levels correlate with significantly improved survival rates when the tumor was located in the right colon. We furthermore found gender-specific differences within these subgroups, revealing most significant increase in overall survival rates in male patients with tumors in right colon expressing low levels of CK1δ RNA. Results become even clearer, when only male patients over 50 years were considered. Together, these findings support the assumption that CK1δ might be a prognostic biomarker for CRC thereby providing an interesting drug target for the development of new therapy concepts.


Assuntos
Caseína Quinase Idelta/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Colo/patologia , Neoplasias Colorretais/patologia , Feminino , Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA/genética , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...