Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 274: 125920, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574532

RESUMO

Herby, the interaction of metallothioneins with commonly used Pt-based anticancer drugs - cisplatin, carboplatin, and oxaliplatin - was investigated using the combined power of elemental (i.e. LA-ICP-MS, CE-ICP-MS) and molecular (i.e. MALDI-TOF-MS) analytical techniques providing not only required information about the interaction, but also the benefit of low sample consumption. The amount of Cd and Pt incorporated within the protein was determined for protein monomers and dimer/oligomers formed by non-oxidative dimerization. Moreover, fluorescence spectrometry using Zn2+-selective fluorescent indicator - FluoZin3 - was employed to monitor the ability of Pt drugs to release natively occurring Zn from the protein molecule. The investigation was carried out using two protein isoforms (i.e. MT2, MT3), and significant differences in behaviour of these two isoforms were observed. The main attention was paid to elucidating whether the protein dimerization/oligomerization may be the reason for the potential failure of the anticancer therapy based on these drugs. Based on the results, it was demonstrated that the interaction of MT2 (both monomers and dimers) interacted with Pt drugs significantly less compared to MT3 (both monomers and dimers). Also, a significant difference between monomeric and dimeric forms (both MT2 and MT3) was not observed. This may suggest that dimer formation is not the key factor leading to the inactivation of Pt drugs.


Assuntos
Metalotioneína , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Metalotioneína/metabolismo , Metalotioneína/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Fluorescência/métodos , Carboplatina/farmacologia , Oxaliplatina/farmacologia , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Platina/química , Metalotioneína 3 , Citostáticos/farmacologia , Citostáticos/química , Espectrometria de Massas/métodos , Humanos
2.
Structure ; 32(3): 292-303.e7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38157858

RESUMO

The CD4 or CD8 co-receptors' interaction with the protein-tyrosine kinase Lck initiates the tyrosine phosphorylation cascade leading to T cell activation. A critical question is: to what extent are co-receptors and Lck coupled? Our contribution concerns Zn2+, indispensable for CD4- and CD8-Lck formation. We combined biochemical and cellular approaches to show that dynamic fluctuations of free Zn2+ in physiological ranges influence Zn(CD4)2 and Zn(CD4)(Lck) species formation and their ratio, although the same Zn(Cys)2(Cys)2 cores. Moreover, we demonstrated that the affinity of Zn2+ to CD4 and CD4-Lck species differs significantly. Increased intracellular free Zn2+ concentration in T cells causes higher CD4 partitioning in the plasma membrane. We additionally found that CD4 palmitoylation decreases the specificity of CD4-Lck formation in the reconstituted membrane model. Our findings help elucidate co-receptor-Lck coupling stoichiometry and demonstrate that intracellular free Zn2+ has a major role in the interplay between CD4 dimers and CD4-Lck assembly.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfócitos T , Linfócitos T/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Antígenos CD4 , Transdução de Sinais , Fosforilação , Zinco/metabolismo , Receptores de Antígenos de Linfócitos T
3.
Metallomics ; 15(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804185

RESUMO

Metallothioneins (MTs) are small, Cys-rich proteins present in various but not all organisms, from bacteria to humans. They participate in zinc and copper metabolism, toxic metals detoxification, and protection against reactive species. Structurally, they contain one or multiple domains, capable of binding a variable number of metal ions. For experimental convenience, biochemical characterization of MTs is mainly performed on Cd(II)-loaded proteins, frequently omitting or limiting Zn(II) binding features and related functions. Here, by choosing 10 MTs with relatively well-characterized structures from animals, plants, and bacteria, we focused on poorly investigated Zn(II)-to-protein affinities, stability-structure relations, and the speciation of individual complexes. For that purpose, MTs were characterized in terms of stoichiometry, pH-dependent Zn(II) binding, and competition with chromogenic and fluorescent probes. To shed more light on protein folding and its relation with Zn(II) affinity, reactivity of variously Zn(II)-loaded MTs was studied by (5,5'-dithiobis(2-nitrobenzoic acid) oxidation in the presence of mild chelators. The results show that animal and plant MTs, despite their architectural differences, demonstrate the same affinities to Zn(II), varying from nano- to low picomolar range. Bacterial MTs bind Zn(II) more tightly but, importantly, with different affinities from low picomolar to low femtomolar range. The presence of weak, moderate, and tight zinc sites is related to the folding mechanisms and internal electrostatic interactions. Differentiated affinities of all MTs define their zinc buffering capacity required for Zn(II) donation and acceptance at various free Zn(II) concentrations (pZn levels). The data demonstrate critical roles of individual Zn(II)-depleted MT species in zinc buffering processes.


Assuntos
Metais , Zinco , Humanos , Animais , Zinco/metabolismo , Ligação Proteica , Metais/metabolismo , Cobre/metabolismo , Metalotioneína/metabolismo , Cádmio/metabolismo
4.
Anal Chem ; 95(29): 10966-10974, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440218

RESUMO

Mammalian zinc metallothionein-3 (Zn7MT3) plays an important role in protecting against copper toxicity by scavenging free Cu(II) ions or removing Cu(II) bound to ß-amyloid and α-synuclein. While previous studies reported that Zn7MT3 reacts with Cu(II) ions to form Cu(I)4Zn(II)4MT3ox containing two disulfides (ox), the precise localization of the metal ions and disulfides remained unclear. Here, we undertook comprehensive structural characterization of the metal-protein complexes formed by the reaction between Zn7MT3 and Cu(II) ions using native ion mobility mass spectrometry (IM-MS). The complex formation mechanism was found to involve the disassembly of Zn3S9 and Zn4S11 clusters from Zn7MT3 and reassembly into Cu(I)xZn(II)yMT3ox complexes rather than simply Zn(II)-to-Cu(I) exchange. At neutral pH, the ß-domain was shown to be capable of binding up to six Cu(I) ions to form Cu(I)6Zn(II)4MT3ox, although the most predominant species was the Cu(I)4Zn(II)4MT3ox complex. Under acidic conditions, four Zn(II) ions dissociate, but the Cu(I)4-thiolate cluster remains stable, highlighting the MT3 role as a Cu(II) scavenger even at lower than the cytosolic pH. IM-derived collision cross sections (CCS) reveal that Cu(I)-to-Zn(II) swap in Zn7MT3 with concomitant disulfide formation induces structural compaction and a decrease in conformational heterogeneity. Collision-induced unfolding (CIU) experiments estimated that the native-like folded Cu(I)4Zn(II)4MT3ox conformation is more stable than Zn7MT3. Native top-down MS demonstrated that the Cu(I) ions are exclusively bound to the ß-domain in the Cu(I)4Zn(II)4MT3ox complex as well as the two disulfides, serving as a steric constraint for the Cu(I)4-thiolate cluster. In conclusion, this study enhances our comprehension of the structure, stability, and dynamics of Cu(I)xZn(II)yMT3ox complexes.


Assuntos
Complexos de Coordenação , Metalotioneína 3 , Animais , Cobre/química , Metalotioneína/química , Espectrometria de Massas , Zinco/química , Complexos de Coordenação/química , Dissulfetos , Mamíferos/metabolismo
5.
Microb Cell Fact ; 22(1): 125, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434134

RESUMO

BACKGROUND: Mammalian metallothioneins (MTs) are small (6-7 kDa), intracellular, cysteine-rich, metal-binding proteins involved, inter alia, in the homeostasis of zinc and copper, detoxification of heavy metals, antioxidation against reactive oxygen species, and protection against DNA damage. The high cysteine content (~ 30%) in MTs makes them toxic to bacterial cells during protein production, resulting in low yield. To address this issue, we present for the first time a combinatorial approach using the small ubiquitin-like modifier (SUMO) and/or sortase as fusion tags for high-level expression of human MT3 in E. coli and its purification by three different strategies. RESULTS: Three different plasmids were generated using SUMO, sortase A pentamutant (eSrtA), and sortase recognition motif (LPETG) as removable fusion tags for high-level expression and purification of human MT3 from the bacterial system. In the first strategy, SUMOylated MT3 was expressed and purified using Ulp1-mediated cleavage. In the second strategy, SUMOylated MT3 with a sortase recognition motif at the N-terminus of MT3 was expressed and purified using sortase-mediated cleavage. In the final strategy, the fusion protein His6-SUMO-eSrtA-LPETG-MT3 was expressed and purified by one-step sortase-mediated inducible on-bead autocleavage. Using these three strategies the apo-MT3 was purified in a yield of 11.5, 11, and 10.8 mg/L, respectively, which is the highest yield achieved for MT expression and purification to date. No effect of MT3 on Ni2+-containing resin was observed. CONCLUSION: The SUMO/sortase-based strategy used as the production system for MT3 resulted in a very high expression level and protein production yield. The apo-MT3 purified by this strategy contained an additional glycine residue and had similar metal binding properties as WT-MT3. This SUMO-sortase fusion system is a simple, robust, and inexpensive one-step purification approach for various MTs as well as other toxic proteins with very high yield via immobilized metal affinity chromatography (IMAC).


Assuntos
Cálcio , Cisteína , Metalotioneína 3 , Humanos , Proteínas de Bactérias/genética , Escherichia coli/genética , Ubiquitina , Metalotioneína 3/metabolismo
6.
Cell Commun Signal ; 21(1): 165, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386441

RESUMO

BACKGROUND: Nucleobindin-2 (Nucb2) is a multidomain protein that, due to its structure, participates in many physiological processes. It was originally identified in several regions of the hypothalamus. However, more recent studies have redefined and extended the function of Nucb2 far beyond its initially observed role as a negative modulator of food intake. RESULTS: Previously, we described Nucb2 as structurally divided into two parts: the Zn2+-sensitive N-terminal half and the Ca2+-sensitive C-terminal half. Here, we investigated the structural and biochemical properties of its C-terminal half, which, after posttranslational processing, yields the formation of a fully uncharacterized peptide product known as nesfatin-3. Nesfatin-3 likely contains all the key respective structural regions of Nucb2. Hence, we expected that its molecular properties and affinity toward divalent metal ions might resemble those of Nucb2. Surprisingly, the obtained results showed that the molecular properties of nesftain-3 were completely different from those of its precursor protein. Moreover, we designed our work as a comparative analysis of two nesfatin-3 homologs. We noticed that in their apo forms, both proteins had similar shapes and existed in solution as extended molecules. They both interacted with divalent metal ions, and this interaction manifested itself in a compaction of the protein molecules. Despite their similarities, the differences between the homologous nesfatin-3s were even more informative. Each of them favored interaction with a different metal cation and displayed unique binding affinities compared either to each other or to Nucb2. CONCLUSIONS: The observed alterations suggested different from Nucb2 physiological roles of nesfatin-3 and different impacts on the functioning of the tissues and on metabolism and its control. Our results clearly demonstrated that nesfatin-3 possessed divalent metal ion binding properties, which remained hidden in the nucleobindin-2 precursor protein.


Assuntos
Nucleobindinas
7.
Metallomics ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37147085

RESUMO

Mammalian metallothioneins (MTs) are small Cys-rich proteins involved in Zn(II) and Cu(I) homeostasis. They bind seven Zn(II) ions in two distinct ß- and α-domains, forming Zn3Cys9 and Zn4Cys11 clusters, respectively. After six decades of research, their role in cellular buffering of Zn(II) ions has begun to be understood recently. This is because of different affinities of bound ions and the proteins' coexistence in variously Zn(II)-loaded Zn4-7MT species in the cell. To date, it has remained unclear how these mechanisms of action occur and how the affinities are differentiated despite the Zn(S-Cys)4 coordination environment being the same. Here, we dissect the molecular basis of these phenomena by using several MT2 mutants, hybrid protein, and isolated domains. Through a combination of spectroscopic and stability studies, thiol(ate) reactivity, and steered molecular dynamics, we demonstrate that both protein folding and thermodynamics of Zn(II) ion (un)binding significantly differ between isolated domains and the whole protein. Close proximity reduces the degrees of freedom of separated domains, making them less dynamic. It is caused by the formation of intra- and interdomain electrostatic interactions. The energetic consequence of domains connection has a critical impact on the role of MTs in the cellular environment, where they function not only as a zinc sponge but also as a zinc buffering system keeping free Zn(II) in the right concentrations. Any change of that subtle system affects the folding mechanism, zinc site stabilities, and cellular zinc buffer components.


Assuntos
Metalotioneína , Zinco , Animais , Zinco/metabolismo , Metalotioneína/metabolismo , Dobramento de Proteína , Simulação de Dinâmica Molecular , Sítios de Ligação , Mamíferos/metabolismo
8.
Metallomics ; 15(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37113075

RESUMO

Mammalian metallothioneins (MTs) are small cysteine-rich proteins whose primary role is participation in zinc and copper homeostasis. Ever since their discovery, MTs have been investigated in terms of metal-binding affinity. The initial concept of seven Zn(II) ions (Zn7MT) bound with the same, undifferentiated low-picomolar affinity in the α and ß domains prevailed for many years and derived from spectroscopic studies. The application of fluorescent zinc probes has changed the perception of MTs, showing that they function in nanomolar to subnanomolar free zinc concentrations due to the presence of tight, moderate, and weak binding sites. The discovery of Zn(II)-depleted MTs in many tissues and determination of cellular free Zn(II) concentrations with differentiated zinc affinity sites revealed the critical importance of partially saturated Zn4-6MTs species in cellular zinc buffering in a wide picomolar to nanomolar range of free Zn(II) concentrations. Until today, there was no clear agreement on the presence of differentiated or only tight zinc sites. Here, we present a series of spectroscopic, mass spectrometry-based, and enzymatic competition experiments that reveal how weak, moderate, or high-affinity ligands interact with human MT2, with special attention to the determination of Zn(II) affinities. The results show that the simplification of the stability model is the major reason for determining significantly different stability data that obscured the actual MTs function. Therefore, we emphasize that different metal affinities are the single most important reason for their presumed function, which changed over the years from tight binding and, thus, storage to one that is highly dynamic.


Assuntos
Metais , Zinco , Animais , Humanos , Zinco/metabolismo , Metais/metabolismo , Metalotioneína/metabolismo , Sítios de Ligação , Mamíferos/metabolismo
9.
Inorg Chem ; 62(10): 4076-4087, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36863010

RESUMO

The widespread application of silver nanoparticles in medicinal and daily life products increases the exposure to Ag(I) of thiol-rich biological environments, which help control the cellular metallome. A displacement of native metal cofactors from their cognate protein sites is a known phenomenon for carcinogenic and otherwise toxic metal ions. Here, we examined the interaction of Ag(I) with the peptide model of the interprotein zinc hook (Hk) domain of Rad50 protein from Pyrococcus furiosus, a key player in DNA double-strand break (DSB) repair. The binding of Ag(I) to 14 and 45 amino acid long peptide models of apo- and Zn(Hk)2 was experimentally investigated by UV-vis spectroscopy, circular dichroism, isothermal titration calorimetry, and mass spectrometry. The Ag(I) binding to the Hk domain was found to disrupt its structure via the replacement of the structural Zn(II) ion by multinuclear Agx(Cys)y complexes. The ITC analysis indicated that the formed Ag(I)-Hk species are at least 5 orders of magnitude stronger than the otherwise extremely stable native Zn(Hk)2 domain. These results show that Ag(I) ions may easily disrupt the interprotein zinc binding sites as an element of silver toxicity at the cellular level.


Assuntos
Nanopartículas Metálicas , Zinco , Zinco/química , Prata , Sítios de Ligação , Ligação Proteica
10.
Bioconjug Chem ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921066

RESUMO

Among all approaches used for the semisynthesis of natural or chemically modified products, enzyme-assisted ligation is among the most promising and dynamically developing approaches. Applying an efficient C247A mutant of Oldenlandia affinis plant ligase OaAEP1 and solid-phase peptide synthesis chemistry, we present the chemoenzymatic synthesis of a complete sequence of the cysteine-rich and metal-binding cyanobacterial metallothionein Synechococcus metallothionein A (SmtA). Zn(II) and Cd(II) binding to the newly synthesized SmtA showed identical properties to the protein expressed in Escherichia coli. The presented approach is the first example of the use of OaAEP1 mutant for total protein synthesis of metallothionein, which occurs in mild conditions preventing cysteine thiol oxidation. The recognition motif of the applied enzyme could naturally occur in the protein structure or be synthetically or genetically incorporated in some loops or secondary structure elements. Therefore, we envision that this strategy can be used for efficiently obtaining SmtA and for a wide range of proteins and their derivatives.

11.
Chem Commun (Camb) ; 59(30): 4471-4474, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36960761

RESUMO

Ion mobility-mass spectrometry (IM-MS) unraveled different conformational stability in Zn4-7-metallothionein-2. We introduced a new molecular dynamics simulation approach that permitted the exploration of all of the conformational space confirming the experimental data, and revealed that not only the Zn-S bonds but also the α-ß domain interactions modulate protein unfolding.


Assuntos
Simulação de Dinâmica Molecular , Zinco , Zinco/química , Metalotioneína/química , Metalotioneína/metabolismo , Conformação Proteica , Espectrometria de Massas
12.
ACS Omega ; 7(50): 46693-46701, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570257

RESUMO

Post-translational modifications (PTMs) of proteins increase the functional diversity of the proteome and play crucial regulatory roles in cellular processes. Ubiquitination is a highly regulated and reversible PTM accomplished by a complex multistep process with the sequential action of several specific ubiquitinating (E1-E3) and deubiquitinating enzymes. The different types of ubiquitination (mono-, poly-mono-, and poly-) and the presence of several target sites in a single substrate add to its complexity, which makes the in vitro reconstitution of this ubiquitin (Ub) machinery a quite cumbersome process. Defects in components of the ubiquitination process also contribute to disease pathogenesis, especially cancer and neurodegeneration. This makes them of interest as potential therapeutic targets. Therefore, the development of efficient and reliable methods that will generate a highly homogeneous ubiquitinated peptide and protein conjugate is a topical subject area of research. In this report, we describe the development of a simple and efficient in vitro sortase-mediated chemoenzymatic strategy for semisynthesis of defined and homogeneous ubiquitin conjugates with more than 90% yield. This was achieved by engineering a sortase recognition motif in the dynamic C-terminus of ubiquitin and its conjugation to an isopeptide-linked di-Gly appended peptide LMFK(ε-GG)TEG corresponding to the ubiquitination site residues 383LMFKTEG389 of p53. The defined and homogeneous ubiquitin conjugates were also weighed for their recognition propensity by deubiquitinating enzymes. This facile semisynthesis of ubiquitin conjugates establishes a simple one-step sortase-mediated chemoenzymatic route for the synthesis of homogeneous and defined isopeptide-linked polypeptides and will help in understanding the complexity of the ubiquitination machinery as well as designing isopeptide drugs and therapeutics.

13.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555126

RESUMO

Hepcidin (DTHFPICIFCCGCCHRSKCGMCCKT), an iron-regulatory hormone, is a 25-amino-acid peptide with four intramolecular disulfide bonds circulating in blood. Its hormonal activity is indirect and consists of marking ferroportin-1 (an iron exporter) for degradation. Hepcidin biosynthesis involves the N-terminally extended precursors prepro-hepcidin and pro-hepcidin, processed by peptidases to the final 25-peptide form. A sequence-specific formation of disulfide bonds and export of the oxidized peptide to the bloodstream follows. In this study we considered the fact that prior to export, reduced hepcidin may function as an octathiol ligand bearing some resemblance to the N-terminal part of the α-domain of metallothioneins. Consequently, we studied its ability to bind Zn(II) and Cd(II) ions using the original peptide and a model for prohepcidin extended N-terminally with a stretch of five arginine residues (5R-hepcidin). We found that both form equivalent mononuclear complexes with two Zn(II) or Cd(II) ions saturating all eight Cys residues. The average affinity at pH 7.4, determined from pH-metric spectroscopic titrations, is 1010.1 M-1 for Zn(II) ions; Cd(II) ions bind with affinities of 1015.2 M-1 and 1014.1 M-1. Using mass spectrometry and 5R-hepcidin we demonstrated that hepcidin can compete for Cd(II) ions with metallothionein-2, a cellular cadmium target. This study enabled us to conclude that hepcidin binds Zn(II) and Cd(II) sufficiently strongly to participate in zinc physiology and cadmium toxicity under intracellular conditions.


Assuntos
Cádmio , Hepcidinas , Cádmio/metabolismo , Peptídeos , Ferro , Dissulfetos , Metalotioneína/metabolismo
14.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498928

RESUMO

Classical zinc fingers domains (ZFs) bind Zn(II) ion by a pair of cysteine and histidine residues to adopt a characteristic and stable ßßα fold containing a small hydrophobic core. As a component of transcription factors, they recognize specific DNA sequences to transcript particular genes. The loss of Zn(II) disrupts the unique structure and function of the whole protein. It has been shown that the saturation of ZFs under cellular conditions is strictly related to their affinity for Zn(II). High affinity warrants their constant saturation, while medium affinity results in their transient structurization depending on cellular zinc availability. Therefore, there must be factors hidden in the sequence and structure of ZFs that impact Zn(II)-to-protein affinities to control their function. Using molecular dynamics simulations and experimental spectroscopic and calorimetric approaches, we showed that particular non-conserved residues derived from ZF sequences impact hydrogen bond formation. Our in silico and in vitro studies show that non-conserved residues can alter metal-coupled folding mechanisms and overall ZF stability. Furthermore, we show that Zn(II) binding to ZFs can also be entropically driven. This preference does not correlate either with Zn(II) binding site or with the extent of the secondary structure but is strictly related to a reservoir of interactions within the second coordination shell, which may loosen or tighten up the structure. Our findings shed new light on how the functionality of ZFs is modulated by non-coordinating residues diversity under cellular conditions. Moreover, they can be helpful for systematic backbone alteration of native ZF ßßα scaffold to create artificial foldamers and proteins with improved stability.


Assuntos
Aminoácidos , Dedos de Zinco , Sequência de Aminoácidos , Termodinâmica , Sítios de Ligação , Zinco/metabolismo
15.
Chemistry ; 28(66): e202203492, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36397648

RESUMO

Invited for the cover of this issue is the group of Artur Krezel at the University of Wroclaw in collaboration with Lars Hemmingsen at The University of Copenhagen and Eva Freisinger at the University of Zürich. The image depicts the outcomes of HgII interactions with Rad50 protein. Read the full text of the article at 10.1002/chem.202202738.


Assuntos
Mercúrio , Zinco , Concentração de Íons de Hidrogênio
16.
Chemistry ; 28(66): e202202738, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36222310

RESUMO

In nature, thiolate-based systems are the primary targets of divalent mercury (HgII ) toxicity. The formation of Hg(Cys)x cores in catalytic and structural protein centers mediates mercury's toxic effects and ultimately leads to cellular damage. Multiple studies have revealed distinct HgII -thiolate coordination preferences, among which linear HgII complexes are the most commonly observed in solution at physiological pH. Trigonal or tetrahedral geometries are formed at basic pH or in tight intraprotein Cys-rich metal sites. So far, no interprotein tetrahedral HgII complex formed at neutral pH has been reported. Rad50 protein is a part of the multiprotein MRN complex, a major player in DNA damage-repair processes. Its central region consists of a conserved CXXC motif that enables dimerization of two Rad50 molecules by coordinating ZnII . Dimerized motifs form a unique interprotein zinc hook domain (Hk) that is critical for the biological activity of the MRN. Using a series of length-differentiated peptide models of the Pyrococcus furiosus zinc hook domain, we investigated its interaction with HgII . Using UV-Vis, CD, PAC, and 199 Hg NMR spectroscopies as well as anisotropy decay, we discovered that all Rad50 fragments preferentially form homodimeric Hg(Hk)2 species with a distorted tetrahedral HgS4 coordination environment at physiological pH; this is the first example of an interprotein mercury site displaying tetrahedral geometry in solution. At higher HgII content, monomeric HgHk complexes with linear geometry are formed. The Hg(Cys)4 core of Rad50 is extremely stable and does not compete with cyanides, NAC, or DTT. Applying ITC, we found that the stability constant of the Rad50 Hg(Hk)2 complex is approximately three orders of magnitude higher than those of the strongest HgII complexes known to date.


Assuntos
Mercúrio , Zinco , Zinco/química , Mercúrio/química , Metais , Reparo do DNA , Concentração de Íons de Hidrogênio
17.
Cell Commun Signal ; 20(1): 163, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280843

RESUMO

Nesfatin-1 and -2 are produced from a reaction in which the N-terminus of human Nucleobindin-2 undergoes proteolytical processing. To date, Nucleobindin-2 and/or nesfatin-1 have only been shown to act as peptide hormones. On the other hand, the purpose of nesfatin-2 remains unknown. Since Nucleobindin-2/nesfatin-1 is thought impact the control of a wide range of physiological processes, including energy homeostasis, neurodegenerative processes and carcinogenesis, its ligands/interactions deserve special studies and attention. However, there are no reports about the molecular properties of the proteolytical products of human Nucleobindin-2 in the literature. Hence, this study aimed to analyze the effect of Zn(II) and Ca(II) on human nesfatin-1, -2, and -1/2 structures. Herein, we report that human nesfatin-1 is a member of the intrinsically disordered protein family, as indicated by circular dichroism and analytical ultracentrifugation experiments. In contrast, we found that the human nesfatin-2 and nesfatin-1/2 structures were globular with intrinsically disordered regions. Under Zn(II) treatment, we observed concentration-dependent structurization and compaction of intrinsically disordered nesfatin-1 and its propensity for oligomerization, as well as destabilization of both nesfatin-2 and nesfatin-1/2. Furthermore, dissociation constants for Zn(II) binding by nesfatin-1, nesfatin-2, and nesfatin-1/2 were also reported. Moreover, structurally distinct nesfatin-1 and -2 seem to be interdependent when linked together, as indicated by the observed molecular properties of nesfatin-1/2, which in turn are not a simple sum of the properties exhibited by the former peptides. Thus, herein, we shed new light on the molecular behavior of human nesfatins, which might help to elucidate the complex function of those peptides. Video abstract.


Assuntos
Proteínas Intrinsicamente Desordenadas , Hormônios Peptídicos , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleobindinas , Hormônios Peptídicos/metabolismo
18.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232441

RESUMO

The metal binding at protein-protein interfaces is still uncharted territory in intermolecular interactions. To date, only a few protein complexes binding Zn(II) in an intermolecular manner have been deeply investigated. The most notable example of such interfaces is located in the highly conserved Rad50 protein, part of the Mre11-Rad50-Nbs1 (MRN) complex, where Zn(II) is required for homodimerization (Zn(Rad50)2). The high stability of Zn(Rad50)2 is conserved not only for the protein derived from the thermophilic archaeon Pyrococcus furiosus (logK12 = 20.95 for 130-amino-acid-long fragment), which was the first one studied, but also for the human paralog studied here (logK12 = 19.52 for a 183-amino-acid-long fragment). As we reported previously, the extremely high stability results from the metal-coupled folding process where particular Rad50 protein fragments play a critical role. The sequence-structure-stability analysis based on human Rad50 presented here separates the individual structural components that increase the stability of the complex, pointing to amino acid residues far away from the Zn(II) binding site as being largely responsible for the complex stabilization. The influence of the individual components is very well reflected by the previously published crystal structure of the human Rad50 zinc hook (PDB: 5GOX). In addition, we hereby report the effect of phosphorylation of the zinc hook domain, which exerts a destabilizing effect on the domain. This study identifies factors governing the stability of metal-mediated protein-protein interactions and illuminates their molecular basis.


Assuntos
Proteínas de Ligação a DNA , Pyrococcus furiosus , Hidrolases Anidrido Ácido/metabolismo , Aminoácidos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosforilação , Zinco/metabolismo
19.
Angew Chem Int Ed Engl ; 61(12): e202116621, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35041243

RESUMO

Recently, we demonstrated that AgI can directly replace ZnII in zinc fingers (ZFs). The cooperative binding of AgI to ZFs leads to a thermodynamically irreversible formation of silver clusters destroying the native ZF structure. Thus, a reported loss of biological function of ZF proteins is a likely consequence of such replacement. Here, we report an X-ray absorption spectroscopy (XAS) study of Agn Sn clusters formed in ZFs to probe their structural features. Selective probing of the local environment around AgI by XAS showed the predominance of digonal AgI coordination to two sulfur donors, coordinated with an average Ag-S distance at 2.41 Å. No Ag-N bonds were present. A mixed AgS2 /AgS3 geometry was found solely in the CCCH AgI -ZF. We also show that cooperative replacement of ZnII ions with the studied Ag2 S2 clusters occurred in a three-ZF transcription factor protein 1MEY#, leading to a dissociation of 1MEY# from the complex with its cognate DNA.


Assuntos
Prata , Dedos de Zinco , DNA/química , Proteínas de Ligação a DNA/química , Prata/química , Fatores de Transcrição/química
20.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831341

RESUMO

Macroautophagy/autophagy plays an important role in cellular copper clearance. The means by which the copper metabolism and autophagy pathways interact mechanistically is vastly unexplored. Dysfunctional ATP7B, a copper-transporting ATPase, is involved in the development of monogenic Wilson disease, a disorder characterized by disturbed copper transport. Using in silico prediction, we found that ATP7B contains a number of potential binding sites for LC3, a central protein in the autophagy pathway, the so-called LC3 interaction regions (LIRs). The conserved LIR3, located at the C-terminal end of ATP7B, was found to directly interact with LC3B in vitro. Replacing the two conserved hydrophobic residues W1452 and L1455 of LIR3 significantly reduced interaction. Furthermore, autophagy was induced in normal human hepatocellular carcinoma cells (HepG2) leading to enhanced colocalization of ATP7B and LC3B on the autophagosome membranes. By contrast, HepG2 cells deficient of ATP7B (HepG2 ATP7B-/-) showed autophagy deficiency at elevated copper condition. This phenotype was complemented by heterologous ATP7B expression. These findings suggest a cooperative role of ATP7B and LC3B in autophagy-mediated copper clearance.


Assuntos
ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Transporte Biológico/efeitos dos fármacos , Cobre/farmacologia , ATPases Transportadoras de Cobre/química , Células Hep G2 , Humanos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...