Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Hum Genet ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170232

RESUMO

Variants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and efficient methods to predict a variant's impact on splicing are needed to interpret the growing number of variants of unknown significance (VUS) identified by exome and genome sequencing. Here, we present the results of the CAGI6 Splicing VUS challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated to determine splicing impact. The performance of 12 prediction methods, along with SpliceAI and CADD, was compared on the 56 functionally validated variants. The maximum accuracy achieved was 82% from two different approaches, one weighting SpliceAI scores by minor allele frequency, and one applying the recently published Splicing Prediction Pipeline (SPiP). SPiP performed optimally in terms of sensitivity, while an ensemble method combining multiple prediction tools and information from databases exceeded all others for specificity. Several challenge methods equalled or exceeded the performance of SpliceAI, with ultimate choice of prediction method likely to depend on experimental or clinical aims. One quarter of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for further improvements to splicing prediction methods for successful clinical application.

2.
Clin Cancer Res ; 29(21): 4419-4429, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756555

RESUMO

PURPOSE: The optimal application of maintenance PARP inhibitor therapy for ovarian cancer requires accessible, robust, and rapid testing of homologous recombination deficiency (HRD). However, in many countries, access to HRD testing is problematic and the failure rate is high. We developed an academic HRD test to support treatment decision-making. EXPERIMENTAL DESIGN: Genomic Instability Scar (GIScar) was developed through targeted sequencing of a 127-gene panel to determine HRD status. GIScar was trained from a noninterventional study with 250 prospectively collected ovarian tumor samples. GIScar was validated on 469 DNA tumor samples from the PAOLA-1 trial evaluating maintenance olaparib for newly diagnosed ovarian cancer, and its predictive value was compared with Myriad Genetics MyChoice (MGMC). RESULTS: GIScar showed significant correlation with MGMC HRD classification (kappa statistics: 0.780). From PAOLA-1 samples, more HRD-positive tumors were identified by GIScar (258) than MGMC (242), with a lower proportion of inconclusive results (1% vs. 9%, respectively). The HRs for progression-free survival (PFS) with olaparib versus placebo were 0.45 [95% confidence interval (CI), 0.33-0.62] in GIScar-identified HRD-positive BRCA-mutated tumors, 0.50 (95% CI, 0.31-0.80) in HRD-positive BRCA-wild-type tumors, and 1.02 (95% CI, 0.74-1.40) in HRD-negative tumors. Tumors identified as HRD positive by GIScar but HRD negative by MGMC had better PFS with olaparib (HR, 0.23; 95% CI, 0.07-0.72). CONCLUSIONS: GIScar is a valuable diagnostic tool, reliably detecting HRD and predicting sensitivity to olaparib for ovarian cancer. GIScar showed high analytic concordance with MGMC test and fewer inconclusive results. GIScar is easily implemented into diagnostic laboratories with a rapid turnaround.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ftalazinas/uso terapêutico , Instabilidade Genômica
3.
Hum Mutat ; 43(12): 2308-2323, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273432

RESUMO

Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5'/3' splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Teorema de Bayes , Splicing de RNA/genética , Éxons/genética , Sítios de Splice de RNA/genética , Aprendizado de Máquina , Íntrons/genética
4.
Curr Oncol ; 29(4): 2776-2791, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448200

RESUMO

(1) Background: In literature, approximately 20% of mCRPC present somatic DNA damage repair (DDR) gene mutations, and their relationship with response to standard therapies in mCRPC is not well understood. The objective was to evaluate outcomes of mCRPC patients treated with standard therapies according to somatic DDR status. (2) Methods: Eighty-three patients were recruited at Caen Cancer Center (France). Progression-free survival (PFS) after first-line treatment was analyzed according to somatic DDR mutation as primary endpoint. PFS according to first exposure to taxane chemotherapy and PFS2 (time to second event of disease progression) depending on therapeutic sequences were also analyzed. (3) Results: Median first-line PFS was 9.7 months in 33 mutated patients and 8.4 months in 50 non-mutated patients (p = 0.9). PFS of first exposure to taxanes was 8.1 months in mutated patients and 5.7 months in non-mutated patients (p = 0.32) and significantly longer among patients with ATM/BRCA1/BRCA2 mutations compared to the others (10.6 months vs. 5.5 months, p = 0.04). PFS2 was 16.5 months in mutated patients, whatever the sequence, and 11.7 months in non-mutated patients (p = 0.07). The mutated patients treated with chemotherapy followed by NHT had a long median PFS2 (49.8 months). (4) Conclusions: mCRPC patients with BRCA1/2 and ATM benefit from standard therapies, with a long response to taxanes.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA/genética , Genes BRCA2 , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Taxoides/uso terapêutico
5.
Cancer Res ; 80(17): 3593-3605, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32641407

RESUMO

BRCA2 is a clinically actionable gene implicated in breast and ovarian cancer predisposition that has become a high priority target for improving the classification of variants of unknown significance (VUS). Among all BRCA2 VUS, those causing partial/leaky splicing defects are the most challenging to classify because the minimal level of full-length (FL) transcripts required for normal function remains to be established. Here, we explored BRCA2 exon 3 (BRCA2e3) as a model for calibrating variant-induced spliceogenicity and estimating thresholds for BRCA2 haploinsufficiency. In silico predictions, minigene splicing assays, patients' RNA analyses, a mouse embryonic stem cell (mESC) complementation assay and retrieval of patient-related information were combined to determine the minimal requirement of FL BRCA2 transcripts. Of 100 BRCA2e3 variants tested in the minigene assay, 64 were found to be spliceogenic, causing mild to severe RNA defects. Splicing defects were also confirmed in patients' RNA when available. Analysis of a neutral leaky variant (c.231T>G) showed that a reduction of approximately 60% of FL BRCA2 transcripts from a mutant allele does not cause any increase in cancer risk. Moreover, data obtained from mESCs suggest that variants causing a decline in FL BRCA2 with approximately 30% of wild-type are not pathogenic, given that mESCs are fully viable and resistant to DNA-damaging agents in those conditions. In contrast, mESCs producing lower relative amounts of FL BRCA2 exhibited either null or hypomorphic phenotypes. Overall, our findings are likely to have broader implications on the interpretation of BRCA2 variants affecting the splicing pattern of other essential exons. SIGNIFICANCE: These findings demonstrate that BRCA2 tumor suppressor function tolerates substantial reduction in full-length transcripts, helping to determine the pathogenicity of BRCA2 leaky splicing variants, some of which may not increase cancer risk.


Assuntos
Neoplasias da Mama/genética , Genes BRCA2 , Predisposição Genética para Doença/genética , Neoplasias Ovarianas/genética , Processamento Alternativo , Animais , Éxons , Feminino , Humanos , Camundongos , Isoformas de Proteínas
6.
Oral Oncol ; 108: 104816, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32480311

RESUMO

Fanconi anemia (FA) is a rare genetic disease that is mostly transmitted, according to a recessive model with biallelic germline alterations in one of the 22 genes of the FA pathway, or monoallelic alteration of the 23rd FA gene (RAD51). The FA pathway is implicated in interstrand DNA crosslink repair, induces genome stability, and is a potent driver of tumorigenesis. Patients with FA have a 500 to 1000-fold increased risk of developing head and neck squamous cell carcinoma (HNSCC). Patients with FA developing an HNSCC, usually have severe radiation toxicities. In this context, the modalities of radiation therapy should be adapted. Some patients with FA present a milder phenotype, especially in the case of medullary FA gene spontaneous reversion. Therefore, in an unusual context of HNSCC, such as no risk factors or a young age, it may be very useful to search anemia or development abnormalities, that may unravel a yet undiagnosed FA disease. Besides, in some young patients with HNSCC who did not suffer from FA, a monoallelic germline alteration in an FA gene could be combined with a second risk factor such as HPV infection or APOBEC alteration. Although several in vitro studies showed that normal cells with monoallelic FA gene alteration may have a particular radiosensitivity, these observations have not been confirmed in vivo in FA heterozygotes patients. Finally, some somatic activating alterations have also been found in HSNCC tumor samples and could be associated with radioresistance.


Assuntos
Anemia de Fanconi/diagnóstico , Anemia de Fanconi/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Adulto , Anemia de Fanconi/patologia , Feminino , Humanos , Masculino , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
7.
Cancer Res ; 80(7): 1374-1386, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32046981

RESUMO

Germline nonsense and canonical splice site variants identified in disease-causing genes are generally considered as loss-of-function (LoF) alleles and classified as pathogenic. However, a fraction of such variants could maintain function through their impact on RNA splicing. To test this hypothesis, we used the alternatively spliced BRCA2 exon 12 (E12) as a model system because its in-frame skipping leads to a potentially functional protein. All E12 variants corresponding to putative LoF variants or predicted to alter splicing (n = 40) were selected from human variation databases and characterized for their impact on splicing in minigene assays and, when available, in patient lymphoblastoid cell lines. Moreover, a selection of variants was analyzed in a mouse embryonic stem cell-based functional assay. Using these complementary approaches, we demonstrate that a subset of variants, including nonsense variants, induced in-frame E12 skipping through the modification of splice sites or regulatory elements and, consequently, led to an internally deleted but partially functional protein. These data provide evidence, for the first time in a cancer-predisposition gene, that certain presumed null variants can retain function due to their impact on splicing. Further studies are required to estimate cancer risk associated with these hypomorphic variants. More generally, our findings highlight the need to exercise caution in the interpretation of putative LoF variants susceptible to induce in-frame splicing modifications. SIGNIFICANCE: This study presents evidence that certain presumed loss-of-function variants in a cancer predisposition gene can retain function due to their direct impact on RNA splicing.


Assuntos
Processamento Alternativo , Proteína BRCA2/genética , Predisposição Genética para Doença , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Células-Tronco Embrionárias , Éxons/genética , Feminino , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes/genética
8.
Clin Chem ; 66(2): 352-362, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32040573

RESUMO

BACKGROUND: Identifying patients with high-grade serous ovarian cancer (HGSOC) who will respond to treatment remains a clinical challenge. We focused on miR-622, a miRNA involved in the homologous recombination repair (HRR) pathway, and we assessed its predictive value in serum prior to first-line chemotherapy and at relapse. METHODS: Serum miR-622 expression was assessed in serum prior to first-line platinum-based chemotherapy in a prospective multicenter study (miRNA Serum Analysis, miRSA, NCT01391351) and a retrospective cohort (Biological Resource Center, BRC), and was also studied at relapse. Progression-free survival (PFS) and overall survival (OS) were used as primary and secondary endpoints prior to first-line chemotherapy and OS as a primary endpoint at relapse. RESULTS: The group with high serum miR-622 expression was associated with a significantly lower PFS (15.4 versus 24.4 months; adjusted HR 2.11, 95% CI 1.2 3.8, P = 0.015) and OS (29.7 versus 40.6 months; adjusted HR 7.68, 95% CI 2.2-26.2, P = 0.0011) in the miRSA cohort. In the BRC cohort, a high expression of miR-622 was also associated with a significantly lower OS (22.8 versus 35.9 months; adjusted HR 1.98, 95% CI 1.1-3.6, P = 0.026). At relapse, high serum miR-622 was associated with a significantly lower OS (7.9 versus 20.6 months; adjusted HR 3.15, 95% CI 1.4-7.2, P = 0.0062). Serum miR-622 expression is a predictive independent biomarker of response to platinum-based chemotherapy for newly diagnosed and recurrent HGSOC. CONCLUSIONS: These results may open new perspectives for HGSOC patient stratification and monitoring of resistance to platinum-based and poly(ADP-ribose)-polymerase-inhibitor-maintenance therapies, facilitating better and personalized treatment decisions.


Assuntos
Ácidos Nucleicos Livres/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , Adulto , Idoso , Antineoplásicos/uso terapêutico , Intervalo Livre de Doença , Feminino , Humanos , MicroRNAs/sangue , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Neoplasias Ovarianas/diagnóstico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Prognóstico , Intervalo Livre de Progressão , Estudos Prospectivos , Estudos Retrospectivos
9.
BMC Genomics ; 21(1): 86, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992191

RESUMO

BACKGROUND: Branch points (BPs) map within short motifs upstream of acceptor splice sites (3'ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3'ss. RESULTS: We used a large set of constitutive and alternative human 3'ss collected from Ensembl (n = 264,787 3'ss) and from in-house RNAseq experiments (n = 51,986 3'ss). We also gathered an unprecedented collection of functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes. Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative 3'ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best performance to predict effects on mRNA splicing, with an accuracy of 89.17%. CONCLUSIONS: Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3'ss, and that BPP was most relevant to predict splicing alteration due to variants in the BP area.


Assuntos
Íntrons , Precursores de RNA , Sítios de Splice de RNA , Splicing de RNA , Processamento Alternativo , Biologia Computacional/métodos , Humanos , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Processamento Pós-Transcricional do RNA , Curva ROC , Reprodutibilidade dos Testes
10.
Bioinformatics ; 36(5): 1634-1636, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617569

RESUMO

SUMMARY: Alternative splicing is an important biological process widely analyzed in molecular diagnostic settings. Indeed, a variant can be pathogenic by splicing alteration and a suspected pathogenic variant (e.g. truncating variant) can be rescued by splicing. In this context, detecting and quantifying alternative splicing is challenging. We developed SpliceLauncher, a fast and easy to use open source tool that aims at detecting, annotating and quantifying alternative splice junctions at high resolution. AVAILABILITY AND IMPLEMENTATION: SpliceLauncher is available at https://github.com/raphaelleman/SpliceLauncher. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Splicing de RNA , Software , Processamento Alternativo
12.
J Med Genet ; 56(7): 453-460, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30890586

RESUMO

BACKGROUND: PALB2 monoallelic loss-of-function germ-line variants confer a breast cancer risk comparable to the average BRCA2 pathogenic variant. Recommendations for risk reduction strategies in carriers are similar. Elaborating robust criteria to identify loss-of-function variants in PALB2-without incurring overprediction-is thus of paramount clinical relevance. Towards this aim, we have performed a comprehensive characterisation of alternative splicing in PALB2, analysing its relevance for the classification of truncating and splice site variants according to the 2015 American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. METHODS: Alternative splicing was characterised in RNAs extracted from blood, breast and fimbriae/ovary-related human specimens (n=112). RNAseq, RT-PCR/CE and CloneSeq experiments were performed by five contributing laboratories. Centralised revision/curation was performed to assure high-quality annotations. Additional splicing analyses were performed in PALB2 c.212-1G>A, c.1684+1G>A, c.2748+2T>G, c.3113+5G>A, c.3350+1G>A, c.3350+4A>C and c.3350+5G>A carriers. The impact of the findings on PVS1 status was evaluated for truncating and splice site variant. RESULTS: We identified 88 naturally occurring alternative splicing events (81 newly described), including 4 in-frame events predicted relevant to evaluate PVS1 status of splice site variants. We did not identify tissue-specific alternate gene transcripts in breast or ovarian-related samples, supporting the clinical relevance of blood-based splicing studies. CONCLUSIONS: PVS1 is not necessarily warranted for splice site variants targeting four PALB2 acceptor sites (exons 2, 5, 7 and 10). As a result, rare variants at these splice sites cannot be assumed pathogenic/likely pathogenic without further evidences. Our study puts a warning in up to five PALB2 genetic variants that are currently reported as pathogenic/likely pathogenic in ClinVar.


Assuntos
Processamento Alternativo , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Alelos , Perfilação da Expressão Gênica , Estudos de Associação Genética/métodos , Mutação em Linhagem Germinativa , Humanos , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Degradação do RNAm Mediada por Códon sem Sentido , Sítios de Splice de RNA
13.
Viruses ; 11(3)2019 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909570

RESUMO

Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related Old-World mammarenaviruses. LASV causes severe hemorrhagic fever with high mortality in humans, whereas no case of MOPV infection has been reported. Comparing MOPV and LASV is a powerful strategy to unravel pathogenic mechanisms that occur during the course of pathogenic arenavirus infection. We used a yeast two-hybrid approach to identify cell partners of MOPV and LASV Z matrix protein in which two autophagy adaptors were identified, NDP52 and TAX1BP1. Autophagy has emerged as an important cellular defense mechanism against viral infections but its role during arenavirus infection has not been shown. Here, we demonstrate that autophagy is transiently induced by MOPV, but not LASV, in infected cells two days after infection. Impairment of the early steps of autophagy significantly decreased the production of MOPV and LASV infectious particles, whereas a blockade of the degradative steps impaired only MOPV infectious particle production. Our study provides insights into the role played by autophagy during MOPV and LASV infection and suggests that this process could partially explain their different pathogenicity.


Assuntos
Arenavirus/fisiologia , Autofagia , Vírus Lassa/fisiologia , Animais , Arenavirus/patogenicidade , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Vírus Lassa/patogenicidade , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Técnicas do Sistema de Duplo-Híbrido , Células Vero
14.
Viruses ; 12(1)2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906112

RESUMO

Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related, rodent-born mammarenaviruses. LASV is the causative agent of Lassa fever, a deadly hemorrhagic fever endemic in West Africa, whereas MOPV is non-pathogenic in humans. The Z matrix protein of arenaviruses is essential to virus assembly and budding by recruiting host factors, a mechanism that remains partially defined. To better characterize the interactions involved, a yeast two-hybrid screen was conducted using the Z proteins from LASV and MOPV as a bait. The cellular proteins ITCH and WWP1, two members of the Nedd4 family of HECT E3 ubiquitin ligases, were found to bind the Z proteins of LASV, MOPV and other arenaviruses. The PPxY late-domain motif of the Z proteins is required for the interaction with ITCH, although the E3 ubiquitin-ligase activity of ITCH is not involved in Z ubiquitination. The silencing of ITCH was shown to affect the replication of the old-world mammarenaviruses LASV, MOPV, Lymphocytic choriomeningitis virus (LCMV) and to a lesser extent Lujo virus (LUJV). More precisely, ITCH was involved in the egress of virus-like particles and the release of infectious progeny viruses. Thus, ITCH constitutes a novel interactor of LASV and MOPV Z proteins that is involved in virus assembly and release.


Assuntos
Arenaviridae/fisiologia , Interações entre Hospedeiro e Microrganismos , Vírus Lassa/fisiologia , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Animais , Arenaviridae/genética , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Vírus Lassa/genética , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética , Células Vero , Proteínas Virais/genética
16.
Genet Med ; 20(12): 1677-1686, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29988077

RESUMO

PURPOSE: Integration of gene panels in the diagnosis of hereditary breast and ovarian cancer (HBOC) requires a careful evaluation of the risk associated with pathogenic or likely pathogenic variants (PVs) detected in each gene. Here we analyzed 34 genes in 5131 suspected HBOC index cases by next-generation sequencing. METHODS: Using the Exome Aggregation Consortium data sets plus 571 individuals from the French Exome Project, we simulated the probability that an individual from the Exome Aggregation Consortium carries a PV and compared it to the estimated frequency within the HBOC population. RESULTS: Odds ratio conferred by PVs within BRCA1, BRCA2, PALB2, RAD51C, RAD51D, ATM, BRIP1, CHEK2, and MSH6 were estimated at 13.22 [10.01-17.22], 8.61 [6.78-10.82], 8.22 [4.91-13.05], 4.54 [2.55-7.48], 5.23 [1.46-13.17], 3.20 [2.14-4.53], 2.49 [1.42-3.97], 1.67 [1.18-2.27], and 2.50 [1.12-4.67], respectively. PVs within RAD51C, RAD51D, and BRIP1 were associated with ovarian cancer family history (OR = 11.36 [5.78-19.59], 12.44 [2.94-33.30] and 3.82 [1.66-7.11]). PALB2 PVs were associated with bilateral breast cancer (OR = 16.17 [5.48-34.10]) and BARD1 PVs with triple-negative breast cancer (OR = 11.27 [3.37-25.01]). Burden tests performed in both patients and the French Exome Project population confirmed the association of PVs of BRCA1, BRCA2, PALB2, and RAD51C with HBOC. CONCLUSION: Our results validate the integration of PALB2, RAD51C, and RAD51D in the diagnosis of HBOC and suggest that the other genes are involved in an oligogenic determinism.


Assuntos
Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , França/epidemiologia , Predisposição Genética para Doença , Testes Genéticos , Variação Genética/genética , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Síndrome Hereditária de Câncer de Mama e Ovário/epidemiologia , Síndrome Hereditária de Câncer de Mama e Ovário/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Fatores de Risco , Sequenciamento do Exoma
17.
Oncotarget ; 9(25): 17334-17348, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29707112

RESUMO

Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.

18.
Nucleic Acids Res ; 46(15): 7913-7923, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750258

RESUMO

Variant interpretation is the key issue in molecular diagnosis. Spliceogenic variants exemplify this issue as each nucleotide variant can be deleterious via disruption or creation of splice site consensus sequences. Consequently, reliable in silico prediction of variant spliceogenicity would be a major improvement. Thanks to an international effort, a set of 395 variants studied at the mRNA level and occurring in 5' and 3' consensus regions (defined as the 11 and 14 bases surrounding the exon/intron junction, respectively) was collected for 11 different genes, including BRCA1, BRCA2, CFTR and RHD, and used to train and validate a new prediction protocol named Splicing Prediction in Consensus Elements (SPiCE). SPiCE combines in silico predictions from SpliceSiteFinder-like and MaxEntScan and uses logistic regression to define optimal decision thresholds. It revealed an unprecedented sensitivity and specificity of 99.5 and 95.2%, respectively, and the impact on splicing was correctly predicted for 98.8% of variants. We therefore propose SPiCE as the new tool for predicting variant spliceogenicity. It could be easily implemented in any diagnostic laboratory as a routine decision making tool to help geneticists to face the deluge of variants in the next-generation sequencing era. SPiCE is accessible at (https://sourceforge.net/projects/spicev2-1/).


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Variação Genética , Sítios de Splice de RNA/genética , Splicing de RNA , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Humanos , Cooperação Internacional , Internet , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-31517176

RESUMO

PURPOSE: To describe a snapshot of international genetic testing practices, specifically regarding the use of multigene panels, for hereditary breast/ovarian cancers. We conducted a survey through the Evidence-Based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium, covering questions about 16 non-BRCA1/2 genes. METHODS: Data were collected via in-person and paper/electronic surveys. ENIGMA members from around the world were invited to participate. Additional information was collected via country networks in the United Kingdom and in Italy. RESULTS: Responses from 61 cancer genetics practices across 20 countries showed that 16 genes were tested by > 50% of the centers, but only six (PALB2, TP53, PTEN, CHEK2, ATM, and BRIP1) were tested regularly. US centers tested the genes most often, whereas United Kingdom and Italian centers with no direct ENIGMA affiliation at the time of the survey were the least likely to regularly test them. Most centers tested the 16 genes through multigene panels; some centers tested TP53, PTEN, and other cancer syndrome-associated genes individually. Most centers reported (likely) pathogenic variants to patients and would test family members for such variants. Gene-specific guidelines for breast and ovarian cancer risk management were limited and differed among countries, especially with regard to starting age and type of imaging and risk-reducing surgery recommendations. CONCLUSION: Currently, a small number of genes beyond BRCA1/2 are routinely analyzed worldwide, and management guidelines are limited and largely based on expert opinion. To attain clinical implementation of multigene panel testing through evidence-based management practices, it is paramount that clinicians (and patients) participate in international initiatives that share panel testing data, interpret sequence variants, and collect prospective data to underpin risk estimates and evaluate the outcome of risk intervention strategies.

20.
Eur J Hum Genet ; 25(12): 1345-1353, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29255180

RESUMO

RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have recently been involved in breast and ovarian cancer predisposition: RAD51B, RAD51C, and RAD51D in ovarian cancer, RAD51B and XRCC2 in breast cancer. The aim of this study was to estimate the contribution of deleterious variants in the five RAD51 paralogs to breast and ovarian cancers. The five RAD51 paralog genes were analyzed by next-generation sequencing technologies in germline DNA from 2649 consecutive patients diagnosed with breast and/or ovarian cancer. Twenty-one different deleterious variants were identified in the RAD51 paralogs in 30 patients: RAD51B (n = 4), RAD51C (n = 12), RAD51D (n = 7), XRCC2 (n = 2), and XRCC3 (n = 5). The overall deleterious variant rate was 1.13% (95% confidence interval (CI): 0.72-1.55%) (30/2649), including 15 variants in breast cancer only cases (15/2063; 0.73% (95% CI: 0.34-1.11%)) and 15 variants in cases with at least one ovarian cancer (15/570; 2.63% (95% CI: 1.24-4.02%)). This study is the first evaluation of the five RAD51 paralogs in breast and ovarian cancer predisposition and it demonstrates that deleterious variants can be present in breast cancer only cases. Moreover, this is the first time that XRCC3 deleterious variants have been identified in breast and ovarian cancer cases.


Assuntos
Neoplasias da Mama/genética , Neoplasias Ovarianas/genética , Rad51 Recombinase/genética , Adulto , Idoso , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...