Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virulence ; 13(1): 980-989, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35658809

RESUMO

One of the greatest achievements of the last century is the development of vaccines against viral diseases. Vaccines are essential for battling infectious diseases and many different formulations are available, including live attenuated vaccines. However, the use of live attenuated vaccines has the potential for adverse effects, including reversion of pathogenicity, recombination, and functional complementation in the host. Marek's disease is a serious disease in poultry controlled by live attenuated vaccines that has resulted in increased virulence over the decades. Recombination between circulating field viruses or vaccines is a proposed mechanism for the increase in virulence, however, complementation between vaccines and field strains has not been demonstrated in chickens. Here, we describe functional complementation of vaccines with virulent virus to functionally complement transmission and spread in the host. Using the natural virus-host model of Marek's disease in chickens, our results show dual infection of target cells in chickens with vaccine and virulent virus providing the opportunity for recombination or complementation to transpire. Interestingly, our controlled results showed no evidence of recombination between vaccine and virulent virus, but functional complementation occurred in two independent experiments providing proof for complementation during natural infection in vaccinated individuals. These results suggest complementation as a potential mechanism for vaccine-mediated viral evolution and the potential for complementation should be taken into consideration when developing novel vaccines.


Assuntos
Coinfecção , Doença de Marek , Doenças das Aves Domésticas , Vacinas Virais , Vírus , Animais , Galinhas , Doença de Marek/prevenção & controle , Vacinas Atenuadas/genética , Vacinas Virais/genética
2.
Viruses ; 14(3)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35336996

RESUMO

We have formerly identified the conserved herpesvirus protein kinase (CHPK) as essential for horizontal transmission of Marek's disease virus (MDV). Thus far, it has been confirmed that the mutation of the invariant lysine (K) of CHPKs abrogates kinase activity and that CHPK activity is required for MDV horizontal transmission. Since CHPK is conserved among all members of the Herpesviridae, we hypothesized that CHPK, and specifically its kinase activity, is important for the horizontal transmission of other herpesviruses. To test this hypothesis, we utilized our experimental and natural infection model in chickens with MD vaccine strain 301B/1 of Gallid alphaherpesvirus 3 (GaHV3). First, we mutated the invariant lysine (K) 157 of 301B/1 CHPK to alanine (A) and determined whether it was required for horizontal transmission. To confirm the requirement of 301B/1 CHPK activity for transmission, a rescued virus was generated in which the A157 was changed back to a K (A157K). Despite both the CHPK mutant (K157A) and rescuant (A157K) viruses having replication defects in vivo, only the CHPK mutant (K157A) was unable to spread to contact chickens, while both wild-type and rescuant (A157K) viruses transmitted efficiently, confirming the importance of CHPK activity for horizontal spread. The data confirm that CHPK is required for GaHV3 transmission and suggest that the requirement of avian CHPKs for natural infection is conserved.


Assuntos
Herpesviridae , Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas , Herpesviridae/metabolismo , Herpesvirus Galináceo 2/genética , Lisina/metabolismo , Proteínas Quinases/metabolismo
3.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801854

RESUMO

The Herpesviridae encode many conserved genes, including the conserved herpesvirus protein kinase (CHPK) that has multifunctional properties. In most cases, herpesviruses lacking CHPK can propagate in cell culture to various degrees, depending on the virus and cell culture system. However, in the natural animal model system of Marek's disease alphaherpesvirus (MDV) in chickens, CHPK is absolutely required for interindividual spread from chicken to chicken. The lack of biological reagents for chicken and MDV has limited our understanding of this important gene during interindividual spread. Here, we engineered epitope-tagged proteins in the context of virus infection in order to detect CHPK in the host. Using immunofluorescence assays and Western blotting during infection in cell culture and in chickens, we determined that the invariant lysine 170 (K170) of MDV CHPK is required for interindividual spread and autophosphorylation of CHPK and that mutation to methionine (M170) results in instability of the CHPK protein. Using these newly generated viruses allowed us to examine the expression of CHPK in infected chickens, and these results showed that mutant CHPK localization and late viral protein expression were severely affected in feather follicles wherein MDV is shed, providing important information on the requirement of CHPK for interindividual spread.IMPORTANCE Marek's disease in chickens is caused by Gallid alphaherpesvirus 2, better known as Marek's disease alphaherpesvirus (MDV). Current vaccines only reduce tumor formation but do not block interindividual spread from chicken to chicken. Understanding MDV interindividual spread provides important information for the development of potential therapies to protect against Marek's disease while also providing a reliable natural host in order to study herpesvirus replication and pathogenesis in animals. Here, we studied the conserved Herpesviridae protein kinase (CHPK) in cell culture and during infection in chickens. We determined that MDV CHPK is not required for cell-to-cell spread, for disease induction, and for oncogenicity. However, it is required for interindividual spread, and mutation of the invariant lysine (K170) results in stability issues and aberrant expression in chickens. This study is important because it addresses the critical role CHPK orthologs play in the natural host.


Assuntos
Alphaherpesvirinae/metabolismo , Galinhas/virologia , Herpesviridae/metabolismo , Doença de Marek/virologia , Proteínas Quinases/metabolismo , Proteínas Virais/metabolismo , Animais , Epitopos , Herpesvirus Galináceo 2 , Doença de Marek/transmissão , Modelos Moleculares , Doenças das Aves Domésticas/virologia , Proteínas Quinases/química , Proteínas Quinases/genética , Pele/patologia , Pele/virologia , Proteínas Virais/química , Proteínas Virais/genética
4.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30518650

RESUMO

The Herpesviridae conserved infected-cell protein 27 (ICP27) is essential for cell culture-based replication of most herpesviruses studied. For members of the Alphaherpesvirinae, ICP27 regulates the expression of many viral genes, including expression of pUL44 (gC), pUL47 (VP13/14), and pUL48 (VP16). These three viral proteins are dysregulated during Marek's disease alphaherpesvirus (MDV) replication in cell culture. MDV replicates in a highly cell-associated manner in cell culture, producing little to no infectious virus. In contrast, infectious cell-free MDV is produced in specialized feather follicle epithelial (FFE) cells of infected chickens, in which these three genes are abundantly expressed. This led us to hypothesize that MDV ICP27, encoded by gene UL54, is a defining factor for the dysregulation of gC, pUL47, and pUL48 and, ultimately, ineffective virus production in cell culture. To address ICP27's role in MDV replication, we generated recombinant MDV with ICP27 deleted (vΔ54). Interestingly, vΔ54 replicated, but plaque sizes were significantly reduced compared to those of parental viruses. The reduced cell-to-cell spread was due to ICP27 since plaque sizes were restored in rescued viruses, as well as when vΔ54 was propagated in cells expressing ICP27 in trans In chickens, vΔ54 replicated, induced disease, and was oncogenic but was unable to transmit from chicken to chicken. To our knowledge, this is the first report showing that the Herpesviridae conserved ICP27 protein is dispensable for replication and disease induction in its natural host.IMPORTANCE Marek's disease (MD) is a devastating oncogenic disease that affects the poultry industry and is caused by MD alphaherpesvirus (MDV). Current vaccines block induction of disease but do not block chicken-to-chicken transmission. There is a knowledge gap in our understanding of how MDV spreads from chicken to chicken. We studied the Herpesviridae conserved ICP27 regulatory protein in cell culture and during MDV infection in chickens. We determined that MDV ICP27 is important but not required for replication in both cell culture and chickens. In addition, MDV ICP27 was not required for disease induction or oncogenicity but was required for chicken-to-chicken transmission. This study is important because it addresses the role of ICP27 during infection in the natural host and provides important information for the development of therapies to protect chickens against MD.


Assuntos
Herpesviridae/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Alphaherpesvirinae/genética , Animais , Galinhas/virologia , Genes Virais , Herpesviridae/genética , Herpesviridae/patogenicidade , Infecções por Herpesviridae/metabolismo , Proteínas Imediatamente Precoces/fisiologia , Doença de Marek/genética , Doença de Marek/virologia , Aves Domésticas/virologia , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...