Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 850, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582841

RESUMO

Understanding development and genetic regulation in the Anopheles gambiae germline is essential to engineer effective genetic control strategies targeting this malaria mosquito vector. These include targeting the germline to induce sterility or using regulatory sequences to drive transgene expression for applications such as gene drive. However, only very few germline-specific regulatory elements have been characterised with the majority showing leaky expression. This has been shown to considerably reduce the efficiency of current genetic control strategies, which rely on regulatory elements with more tightly restricted spatial and/or temporal expression. Meiotic silencing of the sex chromosomes limits the flexibility of transgene expression to develop effective sex-linked genetic control strategies. Here, we build on our previous study, dissecting gametogenesis into four distinct cell populations, using single-cell RNA sequencing to define eight distinct cell clusters and associated germline cell-types using available marker genes. We reveal overexpression of X-linked genes in a distinct cluster of pre-meiotic cells and document the onset of meiotic silencing of the X chromosome in a subcluster of cells in the latter stages of spermatogenesis. This study provides a comprehensive dataset, characterising the expression of distinct cell types through spermatogenesis and widening the toolkit for genetic control of malaria mosquitoes.


Assuntos
Anopheles , Malária , Animais , Masculino , Anopheles/metabolismo , Espermatogênese/genética , Cromossomo X/genética , Cromossomos Sexuais
2.
Sci Rep ; 9(1): 14841, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619757

RESUMO

Although of high priority for the development of genetic tools to control malaria-transmitting mosquitoes, only a few germline-specific regulatory regions have been characterised to date and the presence of global regulatory mechanisms, such as dosage compensation and meiotic sex chromosome inactivation (MSCI), are mostly assumed from transcriptomic analyses of reproductive tissues or whole gonads. In such studies, samples include a significant portion of somatic tissues inevitably complicating the reconstruction of a defined transcriptional map of gametogenesis. By exploiting recent advances in transgenic technologies and gene editing tools, combined with fluorescence-activated cell sorting and RNA sequencing, we have separated four distinct cell lineages from the Anopheles gambiae male gonads: premeiotic, meiotic (primary and secondary spermatocytes) and postmeiotic. By comparing the overall expression levels of X-linked and autosomal genes across the four populations, we revealed a striking transcriptional repression of the X chromosome coincident with the meiotic phase, classifiable as MSCI, and highlighted genes that may evade silencing. In addition, chromosome-wide median expression ratios of the premeiotic population confirmed the absence of dosage compensation in the male germline. Applying differential expression analysis, we highlighted genes and transcript isoforms enriched at specific timepoints and reconstructed the expression dynamics of the main biological processes regulating the key stages of sperm development and maturation. We generated the first transcriptomic atlas of A. gambiae spermatogenesis that will expand the available toolbox for the genetic engineering of vector control technologies. We also describe an innovative and multidimensional approach to isolate specific cell lineages that can be used for the targeted analysis of other A. gambiae organs or transferred to other medically relevant species and model organisms.


Assuntos
Anopheles/genética , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Espermatogênese/genética , Animais , Animais Geneticamente Modificados/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Ligados ao Cromossomo X , Masculino , Testículo/citologia , Testículo/metabolismo , Transcriptoma , Cromossomo X
3.
Sci Rep ; 9(1): 7915, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31114001

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Sci Rep ; 9(1): 5158, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914785

RESUMO

I-PpoI is a homing endonuclease that has a high cleavage activity and specificity for a conserved sequence within the ribosomal rDNA repeats, located in a single cluster on the Anopheles gambiae X chromosome. This property has been exploited to develop a synthetic sex ratio distortion system in this mosquito species. When I-PpoI is expressed from a transgene during spermatogenesis in mosquitoes, the paternal X chromosome is shredded and only Y chromosome-bearing sperm are viable, resulting in a male-biased sex ratio of >95% in the progeny. These distorter male mosquitoes can efficiently suppress caged wild-type populations, providing a powerful tool for vector control strategies. Given that malaria mosquito vectors belong to a species complex comprising at least two major vectors, we investigated whether the sex distorter I-PpoI, originally integrated in the A. gambiae genome, could be transferred via introgression to the sibling vector species Anopheles arabiensis. In compliance with Haldane's rule, F1 hybrid male sterility is known to occur in all intercrosses among members of the Anopheles gambiae complex. A scheme based on genetic crosses and transgene selection was used to bypass F1 hybrid male sterility and introgress the sex distorter I-PpoI into the A. arabiensis genetic background. Our data suggest that this sex distortion technique can be successfully applied to target A. arabiensis mosquitoes.


Assuntos
Anopheles/fisiologia , Razão de Masculinidade , Animais , Animais Geneticamente Modificados , Anopheles/genética , Cromossomos/genética , Cruzamentos Genéticos , Feminino , Fertilidade , Hibridização Genética , Masculino , Fenótipo , Reprodução , Testículo/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...