Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Nucleic Acids Res ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587186

RESUMO

AT-rich interaction domain protein 1A (ARID1A), a SWI/SNF chromatin remodeling complex subunit, is frequently mutated across various cancer entities. Loss of ARID1A leads to DNA repair defects. Here, we show that ARID1A plays epigenetic roles to promote both DNA double-strand breaks (DSBs) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). ARID1A is accumulated at DSBs after DNA damage and regulates chromatin loops formation by recruiting RAD21 and CTCF to DSBs. Simultaneously, ARID1A facilitates transcription silencing at DSBs in transcriptionally active chromatin by recruiting HDAC1 and RSF1 to control the distribution of activating histone marks, chromatin accessibility, and eviction of RNAPII. ARID1A depletion resulted in enhanced accumulation of micronuclei, activation of cGAS-STING pathway, and an increased expression of immunomodulatory cytokines upon ionizing radiation. Furthermore, low ARID1A expression in cancer patients receiving radiotherapy was associated with higher infiltration of several immune cells. The high mutation rate of ARID1A in various cancer types highlights its clinical relevance as a promising biomarker that correlates with the level of immune regulatory cytokines and estimates the levels of tumor-infiltrating immune cells, which can predict the response to the combination of radio- and immunotherapy.

2.
Int J Cancer ; 154(12): 2106-2120, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38353495

RESUMO

Mutations in histone H3.3-encoding genes causing mutant histone tails are associated with specific cancers such as pediatric glioblastomas (H3.3-G34R/V) and giant cell tumor of the bone (H3.3-G34W). The mechanisms by which these mutations promote malignancy are not completely understood. Here we show that cells expressing H3.3-G34W exhibit DNA double-strand breaks (DSBs) repair defects and increased cellular sensitivity to ionizing radiation (IR). Mechanistically, H3.3-G34W can be deposited to damaged chromatin, but in contrast to wild-type H3.3, does not interact with non-homologous end-joining (NHEJ) key effectors KU70/80 and XRCC4 leading to NHEJ deficiency. Together with defective cell cycle checkpoints reported previously, this DNA repair deficiency in H3.3-G34W cells led to accumulation of micronuclei and cytosolic DNA following IR, which subsequently led to activation of the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, thereby inducing release of immune-stimulatory cytokines. These findings suggest a potential for radiotherapy for tumors expressing H3.3-G34W, which can be further improved by combination with STING agonists to induce immune-mediated therapeutic efficacy.


Assuntos
Distúrbios no Reparo do DNA , Histonas , Criança , Humanos , Histonas/genética , Nucleotidiltransferases/genética , Imunidade , DNA
3.
Mol Cell Proteomics ; 23(1): 100692, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081362

RESUMO

A significant portion of mammalian proteomes is secreted to the extracellular space to fulfill crucial roles in cell-to-cell communication. To best recapitulate the intricate and multi-faceted crosstalk between cells in a live organism, there is an ever-increasing need for methods to study protein secretion in model systems that include multiple cell types. In addition, posttranslational modifications further expand the complexity and versatility of cellular communication. This review aims to summarize recent strategies and model systems that employ cellular coculture, chemical biology tools, protein enrichment, and proteomic methods to characterize the composition and function of cellular secretomes. This is all geared towards gaining better understanding of organismal biology in vivo mediated by secretory signaling.


Assuntos
Comunicação Celular , Secretoma , Animais , Mamíferos/metabolismo , Proteoma/metabolismo , Proteômica/métodos
4.
Nat Commun ; 14(1): 8237, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086798

RESUMO

The analysis of proteins that are newly synthesized upon a cellular perturbation can provide detailed insight into the proteomic response that is elicited by specific cues. This can be investigated by pulse-labeling of cells with clickable and stable-isotope-coded amino acids for the enrichment and mass spectrometric characterization of newly synthesized proteins (NSPs), however convoluted protocols prohibit their routine application. Here we report the optimization of multiple steps in sample preparation, mass spectrometry and data analysis, and we integrate them into a semi-automated workflow for the quantitative analysis of the newly synthesized proteome (QuaNPA). Reduced input requirements and data-independent acquisition (DIA) enable the analysis of triple-SILAC-labeled NSP samples, with enhanced throughput while featuring high quantitative accuracy. We apply QuaNPA to investigate the time-resolved cellular response to interferon-gamma (IFNg), observing rapid induction of targets 2 h after IFNg treatment. QuaNPA provides a powerful approach for large-scale investigation of NSPs to gain insight into complex cellular processes.


Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Proteômica/métodos , Fluxo de Trabalho , Aminoácidos/química , Linhagem Celular , Marcação por Isótopo/métodos
5.
J Med Virol ; 95(12): e29280, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054507

RESUMO

Cycling hypoxia (cycH) is a prevalent form of tumor hypoxia that is characterized by exposure of tumor cells to recurrent phases of hypoxia and reoxygenation. CycH has been associated with a particularly aggressive cellular phenotype of tumor cells and increased therapy resistance. By performing comparative analyses under normoxia, physoxia, chronic hypoxia, and cycH, we here uncover distinct effects of cycH on the phenotype of human papillomavirus (HPV)-positive cervical cancer cells. We show that-other than under chronic hypoxia-viral E6/E7 oncogene expression is largely maintained under cycH as is the E6/E7-dependent regulation of p53 and retinoblastoma protein. Further, cycH enables HPV-positive cancer cells to evade prosenescent chemotherapy, similar to chronic hypoxia. Moreover, cells under cycH exhibit a particularly pronounced resistance to the proapoptotic effects of Cisplatin. Quantitative proteome analyses reveal that cycH induces a unique proteomic signature in cervical cancer cells, which includes a significant downregulation of luminal lysosomal proteins. These encompass the potentially proapoptotic cathepsins B and cathepsin L, which, however, appear not to affect the response to Cisplatin under any of the O2 conditions tested. Rather, we show that the proapoptotic Caspase 8/BH3-interacting domain death agonist (BID) cascade plays a pivotal role for the efficiency of Cisplatin-induced apoptosis in HPV-positive cancer cells under all investigated O2 conditions. In addition, we provide evidence that BID activation by Cisplatin is impaired under cycH, which could contribute to the high resistance to the proapoptotic effects of Cisplatin. Collectively, this study provides the first insights into the profound phenotypic alterations induced by cycH in HPV-positive cancer cells, with implications for their therapeutic susceptibility.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/patologia , Proteômica , Proteínas Repressoras/genética , Hipóxia , Proteínas E7 de Papillomavirus/genética
6.
Nat Commun ; 14(1): 6731, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872136

RESUMO

Immunotherapies targeting cancer-specific neoantigens have revolutionized the treatment of cancer patients. Recent evidence suggests that epigenetic therapies synergize with immunotherapies, mediated by the de-repression of endogenous retroviral element (ERV)-encoded promoters, and the initiation of transcription. Here, we use deep RNA sequencing from cancer cell lines treated with DNA methyltransferase inhibitor (DNMTi) and/or Histone deacetylase inhibitor (HDACi), to assemble a de novo transcriptome and identify several thousand ERV-derived, treatment-induced novel polyadenylated transcripts (TINPATs). Using immunopeptidomics, we demonstrate the human leukocyte antigen (HLA) presentation of 45 spectra-validated treatment-induced neopeptides (t-neopeptides) arising from TINPATs. We illustrate the potential of the identified t-neopeptides to elicit a T-cell response to effectively target cancer cells. We further verify the presence of t-neopeptides in AML patient samples after in vivo treatment with the DNMT inhibitor Decitabine. Our findings highlight the potential of ERV-derived neoantigens in epigenetic and immune therapies.


Assuntos
Retrovirus Endógenos , Neoplasias , Humanos , Retrovirus Endógenos/genética , Inibidores de Histona Desacetilases/farmacologia , Linfócitos T , Antígenos de Histocompatibilidade Classe I
7.
Methods Mol Biol ; 2718: 181-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665461

RESUMO

Mass spectrometry (MS)-based proteomics is a rapidly maturing discipline, thus gaining momentum for routine molecular profiling of clinical specimens to improve disease classification, diagnostics, and therapy development. Yet, hurdles need to be overcome to enhance reproducibility in preanalytical sample processing, especially in large, quantity-limited sample cohorts. Therefore, automated sonication and single-pot solid-phase-enhanced sample preparation (autoSP3) was developed as a streamlined workflow that integrates all tasks from tissue lysis and protein extraction, protein cleanup, and proteolysis. It enables the concurrent processing of 96 clinical samples of any type (fresh-frozen or FFPE tissue, liquid biopsies, or cells) on an automated liquid handling platform, which can be directly interfaced to LC-MS for proteome analysis of clinical specimens with high sensitivity, high reproducibility, and short turn-around times.


Assuntos
Proteômica , Manejo de Espécimes , Reprodutibilidade dos Testes , Biópsia Líquida , Espectrometria de Massas
8.
Nucleic Acids Res ; 51(14): e79, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395449

RESUMO

Post-transcriptional gene regulation is accomplished by the interplay of the transcriptome with RNA-binding proteins, which occurs in a dynamic manner in response to altered cellular conditions. Recording the combined occupancy of all proteins binding to the transcriptome offers the opportunity to interrogate if a particular treatment leads to any interaction changes, pointing to sites in RNA that undergo post-transcriptional regulation. Here, we establish a method to monitor protein occupancy in a transcriptome-wide fashion by RNA sequencing. To this end, peptide-enhanced pull-down for RNA sequencing (or PEPseq) uses metabolic RNA labelling with 4-thiouridine (4SU) for light-induced protein-RNA crosslinking, and N-hydroxysuccinimide (NHS) chemistry to isolate protein-crosslinked RNA fragments across all long RNA biotypes. We use PEPseq to investigate changes in protein occupancy during the onset of arsenite-induced translational stress in human cells and reveal an increase of protein interactions in the coding region of a distinct set of mRNAs, including mRNAs coding for the majority of cytosolic ribosomal proteins. We use quantitative proteomics to demonstrate that translation of these mRNAs remains repressed during the initial hours of recovery after arsenite stress. Thus, we present PEPseq as a discovery platform for the unbiased investigation of post-transcriptional regulation.


Assuntos
Biossíntese de Proteínas , Transcriptoma , Humanos , Arsenitos/toxicidade , Proteômica , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Leukemia ; 37(8): 1611-1625, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414921

RESUMO

Venetoclax/azacitidine combination therapy is effective in acute myeloid leukemia (AML) and tolerable for older, multimorbid patients. Despite promising response rates, many patients do not achieve sustained remission or are upfront refractory. Identification of resistance mechanisms and additional therapeutic targets represent unmet clinical needs. By using a genome-wide CRISPR/Cas9 library screen targeting 18,053 protein- coding genes in a human AML cell line, various genes conferring resistance to combined venetoclax/azacitidine treatment were identified. The ribosomal protein S6 kinase A1 (RPS6KA1) was among the most significantly depleted sgRNA-genes in venetoclax/azacitidine- treated AML cells. Addition of the RPS6KA1 inhibitor BI-D1870 to venetoclax/azacitidine decreased proliferation and colony forming potential compared to venetoclax/azacitidine alone. Furthermore, BI-D1870 was able to completely restore the sensitivity of OCI-AML2 cells with acquired resistance to venetoclax/azacitidine. Analysis of cell surface markers revealed that RPS6KA1 inhibition efficiently targeted monocytic blast subclones as a potential source of relapse upon venetoclax/azacitidine treatment. Taken together, our results suggest RPS6KA1 as mediator of resistance towards venetoclax/azacitidine and additional RPS6KA1 inhibition as strategy to prevent or overcome resistance.


Assuntos
Azacitidina , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Azacitidina/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Quinases S6 Ribossômicas , Proteínas Quinases S6 Ribossômicas 90-kDa , RNA Guia de Sistemas CRISPR-Cas
10.
J Med Virol ; 95(6): e28850, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37322807

RESUMO

Infection with certain cutaneous human papillomaviruses (HPV), in conjunction with chronic ultraviolet (UV) exposure, are the major cofactors of non-melanoma skin cancer (NMSC), the most frequent cancer type worldwide. Cutaneous squamous cell carcinomas (SCCs) as well as tumors in general represent three-dimensional entities determined by both temporal and spatial constraints. Whole tissue proteomics is a straightforward approach to understand tumorigenesis in better detail, but studies focusing on different progression states toward a dedifferentiated SCC phenotype on a spatial level are rare. Here, we applied an innovative proteomic workflow on formalin-fixed, paraffin-embedded (FFPE) epithelial tumors derived from the preclinical animal model Mastomys coucha. This rodent is naturally infected with its genuine cutaneous papillomavirus and closely mimics skin carcinogenesis in the context of cutaneous HPV infections in humans. We deciphered cellular networks by comparing diverse epithelial tissues with respect to their differentiation level and infection status. Our study reveals novel regulatory proteins and pathways associated with virus-induced tumor initiation and progression of SCCs. This approach provides the basis to better comprehend the multistep process of skin carcinogenesis.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias Cutâneas , Animais , Humanos , Proteômica , Papillomaviridae/genética , Murinae , Queratinócitos , Carcinogênese
11.
Sci Signal ; 16(782): eabp8923, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098120

RESUMO

DDX RNA helicases promote RNA processing, but DDX3X also activates casein kinase 1 (CK1ε). We show that other DDX proteins also stimulate the protein kinase activity of CK1ε and that this extends to casein kinase 2 (CK2). CK2 enzymatic activity was stimulated by various DDX proteins at high substrate concentrations. DDX1, DDX24, DDX41, and DDX54 were required for full kinase activity in vitro and in Xenopus embryos. Mutational analysis of DDX3X indicated that CK1 and CK2 kinase stimulation engages its RNA binding but not catalytic motifs. Mathematical modeling of enzyme kinetics and stopped-flow spectroscopy showed that DDX proteins function as nucleotide exchange factors toward CK2 and reduce unproductive reaction intermediates and substrate inhibition. Our study reveals protein kinase stimulation by nucleotide exchange as important for kinase regulation and as a generic function of DDX proteins.


Assuntos
Caseína Quinase II , RNA Helicases DEAD-box , Nucleotídeos , Xenopus , Proteínas de Xenopus/metabolismo , RNA Helicases DEAD-box/metabolismo , Caseína Quinase II/metabolismo , Nucleotídeos/metabolismo , Processamento Pós-Transcricional do RNA , Células HEK293 , Humanos , Modelos Teóricos , Células HeLa , Embrião não Mamífero
13.
Mol Psychiatry ; 28(5): 2122-2135, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36782060

RESUMO

MYT1L is an autism spectrum disorder (ASD)-associated transcription factor that is expressed in virtually all neurons throughout life. How MYT1L mutations cause neurological phenotypes and whether they can be targeted remains enigmatic. Here, we examine the effects of MYT1L deficiency in human neurons and mice. Mutant mice exhibit neurodevelopmental delays with thinner cortices, behavioural phenotypes, and gene expression changes that resemble those of ASD patients. MYT1L target genes, including WNT and NOTCH, are activated upon MYT1L depletion and their chemical inhibition can rescue delayed neurogenesis in vitro. MYT1L deficiency also causes upregulation of the main cardiac sodium channel, SCN5A, and neuronal hyperactivity, which could be restored by shRNA-mediated knockdown of SCN5A or MYT1L overexpression in postmitotic neurons. Acute application of the sodium channel blocker, lamotrigine, also rescued electrophysiological defects in vitro and behaviour phenotypes in vivo. Hence, MYT1L mutation causes both developmental and postmitotic neurological defects. However, acute intervention can normalise resulting electrophysiological and behavioural phenotypes in adulthood.


Assuntos
Transtorno do Espectro Autista , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Haploinsuficiência/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fenótipo , Fatores de Transcrição/genética
14.
Nucleic Acids Res ; 51(2): 687-711, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629267

RESUMO

The DNA damage response (DDR) is essential to maintain genome stability, and its deregulation predisposes to carcinogenesis while encompassing attractive targets for cancer therapy. Chromatin governs the DDR via the concerted interplay among different layers, including DNA, histone post-translational modifications (hPTMs) and chromatin-associated proteins. Here, we employ multi-layered proteomics to characterize chromatin-mediated functional interactions of repair proteins, signatures of hPTMs and the DNA-bound proteome during DNA double-strand break (DSB) repair at high temporal resolution. Our data illuminate the dynamics of known and novel DDR-associated factors both at chromatin and at DSBs. We functionally attribute novel chromatin-associated proteins to repair by non-homologous end-joining (NHEJ), homologous recombination (HR) and DSB repair pathway choice. We reveal histone reader ATAD2, microtubule organizer TPX2 and histone methyltransferase G9A as regulators of HR and involved in poly-ADP-ribose polymerase-inhibitor sensitivity. Furthermore, we distinguish hPTMs that are globally induced by DNA damage from those specifically acquired at sites flanking DSBs (γH2AX foci-specific) and profiled their dynamics during the DDR. Integration of complementary chromatin layers implicates G9A-mediated monomethylation of H3K56 in DSBs repair via HR. Our data provide a dynamic chromatin-centered view of the DDR that can be further mined to identify novel mechanistic links and cell vulnerabilities in DSB repair.


Assuntos
Cromatina , Histonas , Cromatina/genética , Histonas/metabolismo , Proteômica , Reparo do DNA , Reparo do DNA por Junção de Extremidades , DNA , Reparo de DNA por Recombinação
15.
Cancer Discov ; 13(2): 332-347, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36259929

RESUMO

The development and regulation of malignant self-renewal remain unresolved issues. Here, we provide biochemical, genetic, and functional evidence that dynamics in ribosomal RNA (rRNA) 2'-O-methylation regulate leukemia stem cell (LSC) activity in vivo. A comprehensive analysis of the rRNA 2'-O-methylation landscape of 94 patients with acute myeloid leukemia (AML) revealed dynamic 2'-O-methylation specifically at exterior sites of ribosomes. The rRNA 2'-O-methylation pattern is closely associated with AML development stage and LSC gene expression signature. Forced expression of the 2'-O-methyltransferase fibrillarin (FBL) induced an AML stem cell phenotype and enabled engraftment of non-LSC leukemia cells in NSG mice. Enhanced 2'-O-methylation redirected the ribosome translation program toward amino acid transporter mRNAs enriched in optimal codons and subsequently increased intracellular amino acid levels. Methylation at the single site 18S-guanosine 1447 was instrumental for LSC activity. Collectively, our work demonstrates that dynamic 2'-O-methylation at specific sites on rRNAs shifts translational preferences and controls AML LSC self-renewal. SIGNIFICANCE: We establish the complete rRNA 2'-O-methylation landscape in human AML. Plasticity of rRNA 2'-O-methylation shifts protein translation toward an LSC phenotype. This dynamic process constitutes a novel concept of how cancers reprogram cell fate and function. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Leucemia Mieloide Aguda , RNA Ribossômico , Humanos , Animais , Camundongos , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Leucemia Mieloide Aguda/patologia , Ribossomos/genética , Ribossomos/metabolismo , Metilação , Fenótipo , Células-Tronco Neoplásicas/metabolismo
16.
Cell Death Discov ; 8(1): 484, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36477080

RESUMO

The Schlafen gene family was first described in mice as a regulator of thymocyte development. Further studies showed involvement of human orthologs in different processes related with viral replication, cellular proliferation, and differentiation. In recent years, a new role for human Slfn11 in DNA replication and chromatin remodeling was described. As commonly observed in many gene families, Slfn paralogs show a tissue-specific expression. This made it difficult to reach conclusions which can be valid in different biological models regarding the function of the different Schlafen proteins. In the present study, we investigate the involvement of SLFN5 in cell-cycle regulation and cell proliferation. A careful analysis of SLFN5 expression revealed that SLFN5 is highly expressed in proliferating tissues and that the protein is ubiquitously present in all the tissues and cell line models we analyzed. Very interestingly, SLFN5 expression oscillates during cell cycle, peaking during S phase. The fact that SLFN5 interacts with protein phosphatase 2A and that SLFN5 depletion causes cell cycle arrest and cellular apoptosis, suggests a direct involvement of this human paralog in cell cycle progression and cellular proliferation. We substantiated our in vitro and in cellulo results using Xenopus laevis oocytes to show that mRNA depletion of the unique Slfn gene present in Xenopus, whose protein sequence shares 80% of homology with SLFN5, recapitulates the phenotype observed in human cells preventing the resumption of meiosis during oocyte development.

17.
Cell Rep ; 41(3): 111524, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260995

RESUMO

The metabolic enzyme branched-chain amino acid transaminase 1 (BCAT1) drives cell proliferation in aggressive cancers such as glioblastoma. Here, we show that BCAT1 localizes to mitotic structures and has a non-metabolic function as a mitotic regulator. Furthermore, BCAT1 is required for chromosome segregation in cancer and induced pluripotent stem cells and tumor growth in human cerebral organoid and mouse syngraft models. Applying gene knockout and rescue strategies, we show that the BCAT1 CXXC redox motif is crucial for controlling cysteine sulfenylation specifically in mitotic cells, promoting Aurora kinase B localization to centromeres, and securing accurate chromosome segregation. These findings offer an explanation for the well-established role of BCAT1 in promoting cancer cell proliferation. In summary, our data establish BCAT1 as a component of the mitotic apparatus that safeguards mitotic fidelity through a moonlighting redox functionality.


Assuntos
Aminoácidos de Cadeia Ramificada , Cisteína , Animais , Humanos , Camundongos , Aurora Quinase B , Modelos Animais de Doenças , Oxirredução , Transaminases
18.
Leukemia ; 36(10): 2418-2429, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36056084

RESUMO

FLT3 tyrosine kinase inhibitor (TKI) therapy evolved into a standard therapy in FLT3-mutated AML. TKI resistance, however, develops frequently with poor outcomes. We analyzed acquired TKI resistance in AML cell lines by multilayered proteome analyses. Leupaxin (LPXN), a regulator of cell migration and adhesion, was induced during early resistance development, alongside the tyrosine kinase PTK2B which phosphorylated LPXN. Resistant cells differed in cell adhesion and migration, indicating altered niche interactions. PTK2B and LPXN were highly expressed in leukemic stem cells in FLT3-ITD patients. PTK2B/FAK inhibition abrogated resistance-associated phenotypes, such as enhanced cell migration. Altered pathways in resistant cells, assessed by nascent proteomics, were largely reverted upon PTK2B/FAK inhibition. PTK2B/FAK inhibitors PF-431396 and defactinib synergized with different TKIs or daunorubicin in FLT3-mutated AML. Midostaurin-resistant and AML cells co-cultured with mesenchymal stroma cells responded particularly well to PTK2B/FAK inhibitor addition. Xenograft mouse models showed significant longer time to leukemia symptom-related endpoint upon gilteritinib/defactinib combination treatment in comparison to treatment with either drug alone. Our data suggest that the leupaxin-PTK2B axis plays an important role in acquired TKI resistance in AML. PTK2B/FAK inhibitors act synergistically with currently used therapeutics and may overcome emerging TKI resistance in FLT3-mutated AML at an early timepoint.


Assuntos
Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Animais , Benzamidas , Linhagem Celular Tumoral , Daunorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Quinase 2 de Adesão Focal/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/genética , Proteoma/genética , Pirazinas , Sulfonamidas , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/uso terapêutico
19.
Blood ; 140(24): 2594-2610, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857899

RESUMO

BCL-2 inhibition has been shown to be effective in acute myeloid leukemia (AML) in combination with hypomethylating agents or low-dose cytarabine. However, resistance and relapse represent major clinical challenges. Therefore, there is an unmet need to overcome resistance to current venetoclax-based strategies. We performed high-throughput drug screening to identify effective combination partners for venetoclax in AML. Overall, 64 antileukemic drugs were screened in 31 primary high-risk AML samples with or without venetoclax. Gilteritinib exhibited the highest synergy with venetoclax in FLT3 wild-type AML. The combination of gilteritinib and venetoclax increased apoptosis, reduced viability, and was active in venetoclax-azacitidine-resistant cell lines and primary patient samples. Proteomics revealed increased FLT3 wild-type signaling in specimens with low in vitro response to the currently used venetoclax-azacitidine combination. Mechanistically, venetoclax with gilteritinib decreased phosphorylation of ERK and GSK3B via combined AXL and FLT3 inhibition with subsequent suppression of the antiapoptotic protein MCL-1. MCL-1 downregulation was associated with increased MCL-1 phosphorylation of serine 159, decreased phosphorylation of threonine 161, and proteasomal degradation. Gilteritinib and venetoclax were active in an FLT3 wild-type AML patient-derived xenograft model with TP53 mutation and reduced leukemic burden in 4 patients with FLT3 wild-type AML receiving venetoclax-gilteritinib off label after developing refractory disease under venetoclax-azacitidine. In summary, our results suggest that combined inhibition of FLT3/AXL potentiates venetoclax response in FLT3 wild-type AML by inducing MCL-1 degradation. Therefore, the venetoclax-gilteritinib combination merits testing as a potentially active regimen in patients with high-risk FLT3 wild-type AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Azacitidina , Tirosina Quinase 3 Semelhante a fms/genética
20.
Proteomics ; 22(15-16): e2100206, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35633285

RESUMO

Chromatin is the assembly of genomic DNA and proteins packaged in the nucleus of eukaryotic cells, which together are crucial in regulating a plethora of cellular processes. Histones may be the best known class of protein constituents in chromatin, which are decorated by a range of post-translational modifications to recruit accessory proteins and protein complexes to execute specific functions, ranging from DNA compaction, repair, transcription, and duplication, all in a dynamic fashion and depending on the cellular state. The key role of chromatin in cellular fitness is emphasized by the deregulation of chromatin determinants predisposing to different diseases, including cancer. For this reason, deep investigation of chromatin composition is fundamental to better understand cellular physiology. Proteomic approaches have played a crucial role to understand critical aspects of this complex interplay, benefiting from the ability to identify and quantify proteins and their modifications in an unbiased manner. This review gives an overview of the proteomic approaches that have been developed by combining mass spectrometry-based with tailored biochemical and genetic methods to examine overall protein make-up of chromatin, to characterize chromatin domains, to determine protein interactions, and to decipher the broad spectrum of histone modifications that represent the quintessence of chromatin function.


Assuntos
Cromatina , Código das Histonas , DNA/genética , Epigênese Genética , Processamento de Proteína Pós-Traducional , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...