Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(2): 18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874191

RESUMO

A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.

2.
Space Sci Rev ; 218(4): 34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645425

RESUMO

Our understanding of the interaction of the large-scale heliosphere with the local interstellar medium (LISM) has undergone a profound change since the very earliest analyses of the problem. In part, the revisions have been a consequence of ever-improving and widening observational results, especially those that identified the entrance of interstellar material and gas into the heliosphere. Accompanying these observations was the identification of the basic underlying physics of how neutral interstellar gas and interstellar charged particles of different energies, up to and including interstellar dust grains, interacted with the temporal flows and electromagnetic fields of the heliosphere. The incorporation of these various basic effects into global models of the interaction, whether focused on neutral interstellar gas and pickup ions, energetic particles such as anomalous and galactic cosmic rays, or magnetic fields and large-scale flows, has profoundly changed our view of how the heliosphere and LISM interact. This article presents a brief history of the conceptual and observation evolution of our understanding of the interaction of the heliosphere with the local interstellar medium, up until approximately 1996.

3.
Nature ; 576(7786): 223-227, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802005

RESUMO

NASA's Parker Solar Probe mission1 recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: 'impulsive' events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions2, and 'gradual' events3,4, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectronvolts. However, some events show aspects of both processes and the electron-proton ratio is not bimodally distributed, as would be expected if there were only two possible processes5. These processes have been very difficult to resolve from prior observations, owing to the various transport effects that affect the energetic particle population en route to more distant spacecraft6. Here we report observations of the near-Sun energetic particle radiation environment over the first two orbits of the probe. We find a variety of energetic particle events accelerated both locally and remotely including by corotating interaction regions, impulsive events driven by acceleration near the Sun, and an event related to a coronal mass ejection. We provide direct observations of the energetic particle radiation environment in the region just above the corona of the Sun and directly explore the physics of particle acceleration and transport.

4.
Science ; 364(6445)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30923171

RESUMO

Saturn's main ring system is associated with a set of small moons that either are embedded within it or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the ring-grazing orbits of the Cassini mission. Data on the moons' morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. We find that the optical properties of the moons' surfaces are determined by two competing processes: contamination by a red material formed in Saturn's main ring system and accretion of bright icy particles or water vapor from volcanic plumes originating on the moon Enceladus.

5.
Geophys Res Lett ; 46(21): 11709-11717, 2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31894172

RESUMO

On 10 January 2001, Cassini briefly entered into the magnetosphere of Jupiter, en route to Saturn. During this excursion into the Jovian magnetosphere, the Cassini Magnetosphere Imaging Instrument/Charge-Energy-Mass Spectrometer detected oxygen and sulfur ions. While Charge-Energy-Mass Spectrometer can distinguish between oxygen and sulfur charge states directly, only 95.9 ± 2.9 keV/e ions were sampled during this interval, allowing for a long time integration of the tenuous outer magnetospheric (~200 RJ) plasma at one energy. For this brief interval for the 95.9 keV/e ions, 96% of oxygen ions were O+, with the other 4% as O2+, while 25% of the energetic sulfur ions were S+, 42% S2+, and 33% S3+. The S2+/O+ flux ratio was observed to be 0.35 (±0.06 Poisson error).

6.
J Geophys Res Space Phys ; 124(9): 7413-7424, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35860291

RESUMO

Pluto energies of a few kiloelectron volts and suprathermal ions with tens of kiloelectron volts and above. We measure this population using the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument on board the New Horizons spacecraft that flew by Pluto in 2015. Even though the measured ions have gyroradii larger than the size of Pluto and the cross section of its magnetosphere, we find that the boundary of the magnetosphere is depleting the energetic ion intensities by about an order of magnitude close to Pluto. The intensity is increasing exponentially with distance to Pluto and reaches nominal levels of the interplanetary medium at about 190R P distance. Inside the wake of Pluto, we observe oscillations of the ion intensities with a periodicity of about 0.2 hr. We show that these can be quantitatively explained by the electric field of an ultralow-frequency wave and discuss possible physical drivers for such a field. We find no evidence for the presence of plutogenic ions in the considered energy range.

7.
Science ; 362(6410)2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287631

RESUMO

Saturn has a sufficiently strong dipole magnetic field to trap high-energy charged particles and form radiation belts, which have been observed outside its rings. Whether stable radiation belts exist near the planet and inward of the rings was previously unknown. The Cassini spacecraft's Magnetosphere Imaging Instrument obtained measurements of a radiation belt that lies just above Saturn's dense atmosphere and is decoupled from the rest of the magnetosphere by the planet's A- to C-rings. The belt extends across the D-ring and comprises protons produced through cosmic ray albedo neutron decay and multiple charge-exchange reactions. These protons are lost to atmospheric neutrals and D-ring dust. Strong proton depletions that map onto features on the D-ring indicate a highly structured and diverse dust environment near Saturn.

8.
Science ; 351(6279): aad9045, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26989259

RESUMO

The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system.

9.
Science ; 341(6142): 144-7, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23811223

RESUMO

We report measurements of energetic (>40 kiloelectron volts) charged particles on Voyager 1 from the interface region between the heliosheath, dominated by heated solar plasma, and the local interstellar medium, which is expected to contain cold nonsolar plasma and the galactic magnetic field. Particles of solar origin at Voyager 1, located at 18.5 billion kilometers (123 astronomical units) from the Sun, decreased by a factor of >10(3) on 25 August 2012, while those of galactic origin (cosmic rays) increased by 9.3% at the same time. Intensity changes appeared first for particles moving in the azimuthal direction and were followed by those moving in the radial and antiradial directions with respect to the solar radius vector. This unexpected heliospheric "depletion region" may form part of the interface between solar plasma and the galaxy.

10.
Science ; 326(5955): 971-3, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19833914

RESUMO

We report an all-sky image of energetic neutral atoms (ENAs) >6 kilo-electron volts produced by energetic protons occupying the region (heliosheath) between the boundary of the extended solar atmosphere and the local interstellar medium (LISM). The map obtained by the Ion and Neutral Camera (INCA) onboard Cassini reveals a broad belt of energetic protons whose nonthermal pressure is comparable to that of the local interstellar magnetic field. The belt, centered at approximately 260 degrees ecliptic longitude extending from north to south and looping back through approximately 80 degrees, appears to be ordered by the local interstellar magnetic field. The shape revealed by the ENA image does not conform to current models, wherein the heliosphere resembles a cometlike figure aligned in the direction of Sun's travel through the LISM.

11.
Science ; 326(5955): 959-62, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19833923

RESUMO

The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space called the heliosphere. The recently launched Interstellar Boundary Explorer (IBEX) spacecraft has completed its first all-sky maps of the interstellar interaction at the edge of the heliosphere by imaging energetic neutral atoms (ENAs) emanating from this region. We found a bright ribbon of ENA emission, unpredicted by prior models or theories, that may be ordered by the local interstellar magnetic field interacting with the heliosphere. This ribbon is superposed on globally distributed flux variations ordered by both the solar wind structure and the direction of motion through the interstellar medium. Our results indicate that the external galactic environment strongly imprints the heliosphere.

12.
Nature ; 454(7200): 67-70, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18596801

RESUMO

Broad regions on both sides of the solar wind termination shock are populated by high intensities of non-thermal ions and electrons. The pre-shock particles in the solar wind have been measured by the spacecraft Voyager 1 (refs 1-5) and Voyager 2 (refs 3, 6). The post-shock particles in the heliosheath have also been measured by Voyager 1 (refs 3-5). It was not clear, however, what effect these particles might have on the physics of the shock transition until Voyager 2 crossed the shock on 31 August-1 September 2007 (refs 7-9). Unlike Voyager 1, Voyager 2 is making plasma measurements. Data from the plasma and magnetic field instruments on Voyager 2 indicate that non-thermal ion distributions probably have key roles in mediating dynamical processes at the termination shock and in the heliosheath. Here we report that intensities of low-energy ions measured by Voyager 2 produce non-thermal partial ion pressures in the heliosheath that are comparable to (or exceed) both the thermal plasma pressures and the scalar magnetic field pressures. We conclude that these ions are the >0.028 MeV portion of the non-thermal ion distribution that determines the termination shock structure and the acceleration of which extracts a large fraction of bulk-flow kinetic energy from the incident solar wind.

13.
Science ; 319(5868): 1380-4, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18323452

RESUMO

Saturn's moon Rhea had been considered massive enough to retain a thin, externally generated atmosphere capable of locally affecting Saturn's magnetosphere. The Cassini spacecraft's in situ observations reveal that energetic electrons are depleted in the moon's vicinity. The absence of a substantial exosphere implies that Rhea's magnetospheric interaction region, rather than being exclusively induced by sputtered gas and its products, likely contains solid material that can absorb magnetospheric particles. Combined observations from several instruments suggest that this material is in the form of grains and boulders up to several decimetres in size and orbits Rhea as an equatorial debris disk. Within this disk may reside denser, discrete rings or arcs of material.

14.
Nature ; 450(7172): 1050-3, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18075586

RESUMO

The concept of an electrical current encircling the Earth at high altitudes was first proposed in 1917 to explain the depression of the horizontal component of the Earth's magnetic field during geomagnetic storms. In situ measurements of the extent and composition of this current were made some 50 years later and an image was obtained in 2001 (ref. 6). Ring currents of a different nature were observed at Jupiter and their presence inferred at Saturn. Here we report images of the ring current at Saturn, together with a day-night pressure asymmetry and tilt of the planet's plasma sheet, based on measurements using the magnetospheric imaging instrument (MIMI) on board Cassini. The ring current can be highly variable with strong longitudinal asymmetries that corotate nearly rigidly with the planet. This contrasts with the Earth's ring current, where there is no rotational modulation and initial asymmetries are organized by local time effects.

15.
Science ; 318(5848): 220-2, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17932283

RESUMO

When the solar wind hits Jupiter's magnetic field, it creates a long magnetotail trailing behind the planet that channels material out of the Jupiter system. The New Horizons spacecraft traversed the length of the jovian magnetotail to >2500 jovian radii (RJ; 1 RJ identical with 71,400 kilometers), observing a high-temperature, multispecies population of energetic particles. Velocity dispersions, anisotropies, and compositional variation seen in the deep-tail (greater, similar 500 RJ) with a approximately 3-day periodicity are similar to variations seen closer to Jupiter in Galileo data. The signatures suggest plasma streaming away from the planet and injection sites in the near-tail region (approximately 200 to 400 RJ) that could be related to magnetic reconnection events. The tail structure remains coherent at least until it reaches the magnetosheath at 1655 RJ.


Assuntos
Júpiter , Elétrons , Meio Ambiente Extraterreno , Íons , Oxigênio , Prótons , Astronave , Enxofre , Temperatura
16.
Science ; 311(5766): 1412-5, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16527968

RESUMO

The bombardment of Saturn's moon Enceladus by >20-kiloelectron volt magnetospheric particles causes particle flux depletions in regions magnetically connected to its orbit. Irrespective of magnetospheric activity, proton depletions are persistent, whereas electron depletions are quickly erased by magnetospheric processes. Observations of these signatures by Cassini's Magnetospheric Imaging Instrument allow remote monitoring of Enceladus' gas and dust environments. This reveals substantial outgassing variability at the moon and suggests increased dust concentrations at its Lagrange points. The characteristics of the particle depletions additionally provide key radial diffusion coefficients for energetic electrons and an independent measure of the inner magnetosphere's rotation velocity.


Assuntos
Atmosfera , Meio Ambiente Extraterreno , Saturno , Elétrons , Magnetismo
17.
Nature ; 439(7077): 699-702, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16467832

RESUMO

Strong discrete aurorae on Earth are excited by electrons, which are accelerated along magnetic field lines towards the planet. Surprisingly, electrons accelerated in the opposite direction have been recently observed. The mechanisms and significance of this anti-earthward acceleration are highly uncertain because only earthward acceleration was traditionally considered, and observations remain limited. It is also unclear whether upward acceleration of the electrons is a necessary part of the auroral process or simply a special feature of Earth's complex space environment. Here we report anti-planetward acceleration of electron beams in Saturn's magnetosphere along field lines that statistically map into regions of aurora. The energy spectrum of these beams is qualitatively similar to the ones observed at Earth, and the energy fluxes in the observed beams are comparable with the energies required to excite Saturn's aurora. These beams, along with the observations at Earth and the barely understood electron beams in Jupiter's magnetosphere, demonstrate that anti-planetward acceleration is a universal feature of aurorae. The energy contained in the beams shows that upward acceleration is an essential part of the overall auroral process.

18.
Science ; 309(5743): 2020-4, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16179469

RESUMO

Voyager 1 (V1) began measuring precursor energetic ions and electrons from the heliospheric termination shock (TS) in July 2002. During the ensuing 2.5 years, average particle intensities rose as V1 penetrated deeper into the energetic particle foreshock of the TS. Throughout 2004, V1 observed even larger, fluctuating intensities of ions from 40 kiloelectron volts (keV) to >/=50 megaelectron volts per nucleon and of electrons from >26 keV to >/=350 keV. On day 350 of 2004 (2004/350), V1 observed an intensity spike of ions and electrons that was followed by a sustained factor of 10 increase at the lowest energies and lesser increases at higher energies, larger than any intensities since V1 was at 15 astronomical units in 1982. The estimated solar wind radial flow speed was positive (outward) at approximately +100 kilometers per second (km s(-1)) from 2004/352 until 2005/018, when the radial flows became predominantly negative (sunward) and fluctuated between approximately -50 and 0 km s(-1) until about 2005/110; they then became more positive, with recent values (2005/179) of approximately +50 km s(-1). The energetic proton spectrum averaged over the postshock period is apparently dominated by strongly heated interstellar pickup ions. We interpret these observations as evidence that V1 was crossed by the TS on 2004/351 (during a tracking gap) at 94.0 astronomical units, evidently as the shock was moving radially inward in response to decreasing solar wind ram pressure, and that V1 has remained in the heliosheath until at least mid-2005.

19.
Science ; 308(5724): 989-92, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15890874

RESUMO

The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.


Assuntos
Saturno , Atmosfera , Meio Ambiente Extraterreno , Íons , Magnetismo , Astronave
20.
Science ; 307(5713): 1270-3, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15731445

RESUMO

The Magnetospheric Imaging Instrument (MIMI) onboard the Cassini spacecraft observed the saturnian magnetosphere from January 2004 until Saturn orbit insertion (SOI) on 1 July 2004. The MIMI sensors observed frequent energetic particle activity in interplanetary space for several months before SOI. When the imaging sensor was switched to its energetic neutral atom (ENA) operating mode on 20 February 2004, at approximately 10(3) times Saturn's radius RS (0.43 astronomical units), a weak but persistent signal was observed from the magnetosphere. About 10 days before SOI, the magnetosphere exhibited a day-night asymmetry that varied with an approximately 11-hour periodicity. Once Cassini entered the magnetosphere, in situ measurements showed high concentrations of H+, H2+, O+, OH+, and H2O+ and low concentrations of N+. The radial dependence of ion intensity profiles implies neutral gas densities sufficient to produce high loss rates of trapped ions from the middle and inner magnetosphere. ENA imaging has revealed a radiation belt that resides inward of the D ring and is probably the result of double charge exchange between the main radiation belt and the upper layers of Saturn's exosphere.


Assuntos
Gases , Íons , Magnetismo , Saturno , Água , Atmosfera , Meio Ambiente Extraterreno , Hidrogênio , Nitrogênio , Oxigênio , Astronave , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...