Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4229, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762499

RESUMO

Squeezed states of light have been used extensively to increase the precision of measurements, from the detection of gravitational waves to the search for dark matter. In the optical domain, high levels of vacuum noise squeezing are possible due to the availability of low loss optical components and high-performance squeezers. At microwave frequencies, however, limitations of the squeezing devices and the high insertion loss of microwave components make squeezing vacuum noise an exceptionally difficult task. Here we demonstrate direct measurements of high levels of microwave squeezing. We use an ultra-low loss setup and weakly-nonlinear kinetic inductance parametric amplifiers to squeeze microwave noise 7.8(2) dB below the vacuum level. The amplifiers exhibit a resilience to magnetic fields and permit the demonstration of large squeezing levels inside fields of up to 2 T. Finally, we exploit the high critical temperature of our amplifiers to squeeze a warm thermal environment, achieving vacuum level noise at a temperature of 1.8 K. These results enable experiments that combine squeezing with magnetic fields and permit quantum-limited microwave measurements at elevated temperatures, significantly reducing the complexity and cost of the cryogenic systems required for such experiments.

2.
Sci Adv ; 10(14): eadm7624, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578995

RESUMO

When strongly pumped at twice their resonant frequency, nonlinear resonators develop a high-amplitude intracavity field, a phenomenon known as parametric self-oscillations. The boundary over which this instability occurs can be extremely sharp and thereby presents an opportunity for realizing a detector. Here, we operate such a device based on a superconducting microwave resonator whose nonlinearity is engineered from kinetic inductance. The device indicates the absorption of low-power microwave wavepackets by transitioning to a self-oscillating state. Using calibrated pulses, we measure the detection efficiency to zeptojoule energy wavepackets. We then apply it to measurements of electron spin resonance, using an ensemble of 209Bi donors in silicon that are inductively coupled to the resonator. We achieve a latched readout of the spin signal with an amplitude that is five hundred times greater than the underlying spin echoes.

3.
Sci Adv ; 9(10): eadg1593, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897947

RESUMO

The use of superconducting microresonators together with quantum-limited Josephson parametric amplifiers has enhanced the sensitivity of pulsed electron spin resonance (ESR) measurements by more than four orders of magnitude. So far, the microwave resonators and amplifiers have been designed as separate components due to the incompatibility of Josephson junction-based devices with magnetic fields. This has produced complex spectrometers and raised technical barriers toward adoption of the technique. Here, we circumvent this issue by coupling an ensemble of spins directly to a weakly nonlinear and magnetic field-resilient superconducting microwave resonator. We perform pulsed ESR measurements with a 1-pL mode volume containing 6 × 107 spins and amplify the resulting signals within the device. When considering only those spins that contribute to the detected signals, we find a sensitivity of [Formula: see text] for a Hahn echo sequence at a temperature of 400 mK. In situ amplification is demonstrated at fields up to 254 mT, highlighting the technique's potential for application under conventional ESR operating conditions.

4.
Phys Rev Lett ; 125(15): 156804, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095630

RESUMO

A semiconductor transmon with an epitaxial Al shell fully surrounding an InAs nanowire core is investigated in the low E_{J}/E_{C} regime. Little-Parks oscillations as a function of flux along the hybrid wire axis are destructive, creating lobes of reentrant superconductivity separated by a metallic state at a half quantum of applied flux. In the first lobe, phase winding around the shell can induce topological superconductivity in the core. Coherent qubit operation is observed in both the zeroth and first lobes. Splitting of parity bands by coherent single-electron coupling across the junction is not resolved beyond line broadening, placing a bound on Majorana coupling, E_{M}/h<10 MHz, much smaller than the Josephson coupling E_{J}/h∼4.7 GHz.

5.
Nat Nanotechnol ; 13(10): 915-919, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30038371

RESUMO

The coherent tunnelling of Cooper pairs across Josephson junctions (JJs) generates a nonlinear inductance that is used extensively in quantum information processors based on superconducting circuits, from setting qubit transition frequencies1 and interqubit coupling strengths2 to the gain of parametric amplifiers3 for quantum-limited readout. The inductance is either set by tailoring the metal oxide dimensions of single JJs, or magnetically tuned by parallelizing multiple JJs in superconducting quantum interference devices with local current-biased flux lines. JJs based on superconductor-semiconductor hybrids represent a tantalizing all-electric alternative. The gatemon is a recently developed transmon variant that employs locally gated nanowire superconductor-semiconductor JJs for qubit control4,5. Here we go beyond proof-of-concept and demonstrate that semiconducting channels etched from a wafer-scale two-dimensional electron gas (2DEG) are a suitable platform for building a scalable gatemon-based quantum computer. We show that 2DEG gatemons meet the requirements6 by performing voltage-controlled single qubit rotations and two-qubit swap operations. We measure qubit coherence times up to ~2 µs, limited by dielectric loss in the 2DEG substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...