Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 358(6360)2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29026015

RESUMO

Spaceborne measurements by NASA's Orbiting Carbon Observatory-2 (OCO-2) at the kilometer scale reveal distinct structures of atmospheric carbon dioxide (CO2) caused by known anthropogenic and natural point sources. OCO-2 transects across the Los Angeles megacity (USA) show that anthropogenic CO2 enhancements peak over the urban core and decrease through suburban areas to rural background values more than ~100 kilometers away, varying seasonally from ~4.4 to 6.1 parts per million. A transect passing directly downwind of the persistent isolated natural CO2 plume from Yasur volcano (Vanuatu) shows a narrow filament of enhanced CO2 values (~3.4 parts per million), consistent with a CO2 point source emitting 41.6 kilotons per day. These examples highlight the potential of the OCO-2 sensor, with its unprecedented resolution and sensitivity, to detect localized natural and anthropogenic CO2 sources.

2.
Proc Natl Acad Sci U S A ; 113(35): 9734-9, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528660

RESUMO

Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit [Formula: see text] 2 kg/h to 5 kg/h through [Formula: see text] 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571-6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign.

3.
Appl Radiat Isot ; 70(7): 1100-3, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22134026

RESUMO

Radioactive waste must be characterized in order to verify its conformance with national regulations for intermediate storage or its disposal. Segmented gamma scanning (SGS) is a most widely applied non-destructive analytical technique for the characterization of radioactive waste drums. The isotope specific activity content is generally calculated assuming a homogeneous matrix and activity distribution for each measured drum segment. However, real radioactive waste drums exhibit non-uniform isotope and density distributions most affecting the reliability and accuracy of activities reconstruction in SGS. The presence of internal shielding structures in the waste drum contributes generally to a strong underestimation of the activity and this in particular for radioactive sources emitting low energy gamma-rays independently of their spatial distribution. In this work we present an improved method to quantify the activity of spatially concentrated gamma-emitting isotopes (point sources or hot spots) in heterogeneous waste drums with internal shielding structures. The isotope activity is reconstructed by numerical simulations and fits of the angular dependent count rate distribution recorded during the drum rotation in SGS using an analytical expression derived from a geometric model. First results of the improved method and enhancements of this method are shown and are compared to each other as well as to the conventional method which assumes a homogeneous matrix and activity distribution. It is shown that the new model improves the accuracy and the reliability of the activity reconstruction in SGS and that the presented algorithm is suitable with respect to the framework requirement of industrial application.

4.
Appl Radiat Isot ; 69(6): 880-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21353575

RESUMO

This work improves the reliability and accuracy in the reconstruction of the total isotope activity content in heterogeneous nuclear waste drums containing point sources. The method is based on χ(2)-fits of the angular dependent count rate distribution measured during a drum rotation in segmented gamma scanning. A new description of the analytical calculation of the angular count rate distribution is introduced based on a more precise model of the collimated detector. The new description is validated and compared to the old description using MCNP5 simulations of angular dependent count rate distributions of Co-60 and Cs-137 point sources. It is shown that the new model describes the angular dependent count rate distribution significantly more accurate compared to the old model. Hence, the reconstruction of the activity is more accurate and the errors are considerably reduced that lead to more reliable results. Furthermore, the results are compared to the conventional reconstruction method assuming a homogeneous matrix and activity distribution.


Assuntos
Radioisótopos de Césio , Radioisótopos de Cobalto , Simulação por Computador , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Resíduos Radioativos/análise , Calibragem , Desenho de Equipamento , Espectrometria gama/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...