Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3030, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031401

RESUMO

Approximately half of the freshwater discharged from the Greenland and Antarctic Ice Sheets enters the ocean subsurface as a result of basal ice melt, or runoff draining via the grounding line of a deep ice shelf or marine-terminating glacier. Around Antarctica and parts of northern Greenland, this freshwater then experiences prolonged residence times in large cavities beneath floating ice tongues. Due to the inaccessibility of these cavities, it is unclear how they moderate the freshwater associated supply of nutrients such as iron (Fe) to the ocean. Here, we show that subglacial dissolved Fe export from Nioghalvfjerdsbrae (the '79°N Glacier') is decoupled from particulate inputs including freshwater Fe supply, likely due to the prolonged ~162-day residence time of Atlantic water beneath Greenland's largest floating ice-tongue. Our findings indicate that the overturning rate and particle-dissolved phase exchanges in ice cavities exert a dominant control on subglacial nutrient supply to shelf regions.

2.
Sci Rep ; 10(1): 15230, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943713

RESUMO

Climate change has led to a ~ 40% reduction in summer Arctic sea-ice cover extent since the 1970s. Resultant increases in light availability may enhance phytoplankton production. Direct evidence for factors currently constraining summertime phytoplankton growth in the Arctic region is however lacking. GEOTRACES cruise GN05 conducted a Fram Strait transect from Svalbard to the NE Greenland Shelf in summer 2016, sampling for bioessential trace metals (Fe, Co, Zn, Mn) and macronutrients (N, Si, P) at ~ 79°N. Five bioassay experiments were conducted to establish phytoplankton responses to additions of Fe, N, Fe + N and volcanic dust. Ambient nutrient concentrations suggested N and Fe were deficient in surface seawater relative to typical phytoplankton requirements. A west-to-east trend in the relative deficiency of N and Fe was apparent, with N becoming more deficient towards Greenland and Fe more deficient towards Svalbard. This aligned with phytoplankton responses in bioassay experiments, which showed greatest chlorophyll-a increases in + N treatment near Greenland and + N + Fe near Svalbard. Collectively these results suggest primary N limitation of phytoplankton growth throughout the study region, with conditions potentially approaching secondary Fe limitation in the eastern Fram Strait. We suggest that the supply of Atlantic-derived N and Arctic-derived Fe exerts a strong control on summertime nutrient stoichiometry and resultant limitation patterns across the Fram Strait region.

3.
Nat Commun ; 11(1): 556, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992707

RESUMO

Rivers are a major supplier of particulate and dissolved material to the ocean, but their role as sources of bio-essential dissolved iron (dFe) is thought to be limited due to rapid, efficient Fe removal during estuarine mixing. Here, we use trace element and radium isotope data to show that the influence of the Congo River margin on surface Fe concentrations is evident over 1000 km from the Congo outflow. Due to an unusual combination of high Fe input into the Congo-shelf-zone and rapid lateral transport, the Congo plume constitutes an exceptionally large offshore dFe flux of 6.8 ± 2.3 × 108 mol year-1. This corresponds to 40 ± 15% of atmospheric dFe input into the South Atlantic Ocean and makes a higher contribution to offshore Fe availability than any other river globally. The Congo River therefore contributes significantly to relieving Fe limitation of phytoplankton growth across much of the South Atlantic.


Assuntos
Compostos de Ferro/análise , Ferro/análise , Rios/química , Água do Mar/química , Oceano Atlântico , Congo , Monitoramento Ambiental , Sedimentos Geológicos/química , Oceanos e Mares , Fitoplâncton/metabolismo , Radioisótopos/análise , Rádio (Elemento)/análise , Oligoelementos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA