Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(12): 7905-7914, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478891

RESUMO

Experimental and computational studies illuminating the factors that guide metal-centered stereogenicity and, therefrom, selectivity in transfer hydrogenative carbonyl additions of alcohol proelectrophiles catalyzed by chiral-at-metal-and-ligand octahedral d6 metal ions, iridium(III) and ruthenium(II), are described. To augment or invert regio-, diastereo-, and enantioselectivity, predominantly one from among as many as 15 diastereomeric-at-metal complexes is required. For iridium(III) catalysts, cyclometalation assists in defining the metal stereocenter, and for ruthenium(II) catalysts, iodide counterions play a key role. Whereas classical strategies to promote selectivity in metal catalysis aim for high-symmetry transition states, well-defined low-symmetry transition states can unlock selectivities that are otherwise difficult to achieve or inaccessible.

2.
J Am Chem Soc ; 145(42): 22890-22895, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37845783

RESUMO

The first deoxygenative Heck reactions are described, as illustrated by formate-mediated cine-substitutions of vinyl triflates with aryl iodides. The collective data corroborate a mechanism in which Pd(OAc)2 and Bu4NI form the dianionic iodide-bridged dimer [Pd2I6][NBu4]2, which, under reducing conditions, serves as a precursor to the palladium(I) complex [Pd2I4][NBu4]2. Dinculear oxidative addition of aryl iodide forms [Pd2I5(Ar)][NBu4]2, which dissociates to the monometallic complex [PdI2(Ar)][NBu4]. Vinyl triflate migratory insertion-sulfonate elimination delivers a palladium(IV) carbene, which upon ß-hydride elimination/C-H reductive elimination gives the product of cine-substitution. These processes are the first efficient formate-mediated cross-electrophile reductive couplings beyond carbonyl addition.

3.
Synthesis (Stuttg) ; 55(10): 1487-1496, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37841289

RESUMO

The evolution of methods for carbonyl allylation and crotylation of alcohol proelectrophiles culminating in the design of iodide-bound ruthenium-JOSIPHOS catalysts is prefaced by a brief historical perspective on asymmetric carbonyl allylation and its relevance to polyketide construction. Using gaseous allene or butadiene as precursors to allyl- or crotylruthenium nucleophiles, respectively, new capabilities for carbonyl allylation and crotylation have been unlocked, including stereo- and site-selective methods for the allylation and crotylation of 1,3-diols and related polyols.

4.
ACS Catal ; 13(3): 1662-1668, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37869365

RESUMO

Iodide-bound ruthenium-JOSIPHOS complexes catalyze the redox-neutral C-C coupling of primary alcohols 2a-2r with the gaseous allene (propadiene) 1a to form enantiomerically enriched homoallylic alcohols 3a-3r with complete atom-efficiency. Using formic acid as reductant, aldehydes dehydro-2a and dehydro-2c participate in reductive C-C coupling with allene to deliver adducts 3a and 3c with comparable levels of asymmetric induction. Deuterium labeling studies corroborate a mechanism in which alcohol dehydrogenation triggers allene hydroruthenation to form transient allylruthenium-aldehyde pairs that participate in carbonyl addition. Notably, due to a kinetic preference for primary alcohol dehydrogenation, chemoselective C-C coupling of 1°,2°-1,3-diols occurs in the absence of protecting groups. As illustrated by the synthesis of C7-C15 of spirastrellolide B and F (7 vs 17 steps), C3-C10 of cryptocarya diacetate (3 vs 7 or 9 steps), and a fragment common to C8'-C14' of mycolactone F (1 vs 4 steps) and C22-C28 marinomycin A (1 vs 9 steps), this capability streamlines type I polyketide construction.

5.
Org Lett ; 25(36): 6763-6766, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37671869

RESUMO

The C28-C41 side-chain of the proposed structure of neaumycin B, which encompasses a contiguous stereohextet, is prepared in 8 steps (longest linear sequence). Convergency is maximized via Williams' Felkin-Anh-selective triorganozincate-mediated vinylation of an α,ß-stereogenic aldehyde. The relative stereochemical assignment of the C33-C35 stereotriad was accomplished via the 13C NMR analysis of the related acetonide. Relative stereochemistry of C33 carbinol and C36-C37 glycidol was determined by comparative NOE analysis of the related diastereomeric furans.

6.
Org Lett ; 25(31): 5907-5910, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37527501

RESUMO

A process for 3-fold scaffold diversification is achieved via ruthenium-catalyzed oxidative alkynylation of commercially available oxetanols, azetidinols and bicyclopentanols to form α,ß-acetylenic ketones (ynones), which are subsequently converted to oxetane-, azetidine- and bicyclopentane-bearing pyrazoles, isoxazoles and pyrimidines. A one-pot oxidative alkynylation-condensation protocol that directly converts azetidinols to azetidine-substituted pyrazoles or pyrimidines is demonstrated.

7.
J Am Chem Soc ; 145(33): 18676-18683, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555765

RESUMO

The first correlation between metal-centered stereogenicity and regioselectivity in a catalytic process is described. Alternate pseudo-diastereomeric chiral-at-ruthenium complexes of the type RuX(CO)[η3-prenyl][(S)-SEGPHOS] form in a halide-dependent manner and display divergent regioselectivity in catalytic C-C couplings of isoprene to alcohol proelectrophiles via hydrogen autotransfer. Whereas the chloride-bound ruthenium-SEGPHOS complex prefers a trans-relationship between the halide and carbonyl ligands and delivers products of carbonyl sec-prenylation, the iodide-bound ruthenium-SEGPHOS complex prefers a cis-relationship between the halide and carbonyl ligands and delivers products of carbonyl tert-prenylation. The chloride- and iodide-bound ruthenium-SEGPHOS complexes were characterized in solution and solid phase by 31P NMR and X-ray diffraction. Density functional theory calculations of the iodide-bound catalyst implicate a Curtin-Hammett-type scenario in which the transition states for aldehyde coordination from an equilibrating mixture of sec- and tert-prenylruthenium complexes are rate- and product-determining. Thus, control of metal-centered diastereoselectivity has unlocked the first catalytically enantioselective isoprene-mediated carbonyl tert-prenylations.

8.
J Am Chem Soc ; 145(31): 17461-17467, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494281

RESUMO

The first total synthesis and structure validation of an arenimycin/SF2446 type II polyketide is described, as represented by de novo construction of SF2446 B3, the aglycone shared by this family of type II polyketides. Ruthenium-catalyzed α-ketol-benzocyclobutenone [4 + 2] cycloaddition, which occurs via successive stereoablation-stereoregeneration, affects a double dynamic kinetic asymmetric transformation wherein two racemic starting materials combine to form the congested angucycline bay region with control of regio-, diastereo-, and enantioselectivity. This work represents the first application of transfer hydrogenative cycloaddition and enantioselective intermolecular metal-catalyzed C-C bond activation in target-oriented synthesis.


Assuntos
Antibacterianos , Policetídeos , Reação de Cicloadição , Policetídeos/química , Estereoisomerismo , Catálise
9.
Org Lett ; 25(20): 3659-3663, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37172193

RESUMO

O-Acetyl 1,3-propanediol serves as an acrolein proelectrophile in π-allyliridium-C,O-benzoate-catalyzed carbonyl allylations mediated by racemic α-substituted allylic acetates. Using the iridium catalyst modified by (R)-SEGPHOS, a variety of 3-hydroxy-1,5-hexadienes are formed with uniformly high levels of regio-, anti-diastereo-, and enantioselectivity.

10.
J Am Chem Soc ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018070

RESUMO

The first use of 1,4-pentadiene and 1,5-hexadiene as allylmetal pronucleophiles in regio-, anti-diastereo-, and enantioselective carbonyl addition from alcohol proelectrophiles is described. As corroborated by deuterium labeling experiments, primary alcohol dehydrogenation delivers a ruthenium hydride that affects alkene isomerization to furnish a conjugated diene, followed by transfer hydrogenative carbonyl addition. Hydrometalation appears to be assisted by the formation of a fluxional olefin-chelated homoallylic alkylruthenium complex II, which exists in equilibrium with its pentacoordinate η1 form to enable ß-hydride elimination. This effect confers remarkable chemoselectivity: while 1,4-pentadiene and 1,5-hexadiene are competent pronucleophiles, higher 1,n-dienes are not, and the olefinic functional groups of the products remain intact under conditions in which the 1,4- and 1,5-dienes isomerize. A survey of halide counterions reveals iodide-bound ruthenium-JOSIPHOS catalysts are uniquely effective in these processes. This method was used to prepare a previously reported C1-C7 substructure of (-)-pironetin in 4 vs 12 steps.

11.
J Am Chem Soc ; 145(14): 8242-8247, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36996284

RESUMO

The first systematic study of catalytic enantioselective 1,2-additions to acrolein is described. Specifically, using allyl alcohol as a tractable, inexpensive acrolein proelectrophile, iridium-catalyzed acrolein allylation is achieved with high levels of regio-, anti-diastereo-, and enantioselectivity. This process delivers 3-hydroxy-1,5-hexadienes, a useful compound class that is otherwise challenging to access via enantioselective catalysis. Two-fold use of this method unlocks concise total syntheses of amphidinolide R (9 vs 23 steps, LLS) and amphidinolide J (9 vs 23 or 26 steps, LLS), which are prepared in fewer than half the steps previously possible, and the first total synthesis of amphidinolide S (10 steps, LLS).


Assuntos
Álcoois , Compostos Alílicos , Acroleína , Estereoisomerismo
12.
Angew Chem Int Ed Engl ; 62(23): e202303345, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37000412

RESUMO

The first metal-catalyzed oxidative alkynylations of primary alcohols or aldehydes to form α,ß-acetylenic ketones (ynones) are described. Deuterium labelling studies corroborate a novel reaction mechanism in which alkyne hydroruthenation forms a transient vinylruthenium complex that deprotonates the terminal alkyne to form the active alkynylruthenium nucleophile.

13.
J Org Chem ; 88(8): 4965-4974, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36449710

RESUMO

In this Perspective, the use of methanol and ethanol as C1 and C2 feedstocks in metal-catalyzed C-C couplings to π-unsaturated pronucleophiles via hydrogen auto-transfer is surveyed. In these processes, alcohol oxidation to form an aldehyde electrophile is balanced by reduction of an π-unsaturated hydrocarbon to form a transient organometallic nucleophile. Mechanistically related reductive couplings of paraformaldehyde mediated by alcohol reductants or formic acid also are described. These processes encompass the first catalytic enantioselective C-C couplings of methanol and ethanol and, more broadly, illustrate how the native reducing ability of alcohols enable the departure from premetalated reagents in carbonyl addition.

14.
ACS Catal ; 13(16): 10976-10987, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-38464997

RESUMO

Intermolecular metal-catalyzed C‒C couplings of unactivated primary alcohols or aldehydes to form ketones are catalogued. Reactions are classified on the basis of pronucleophile. Protocols involving premetalated reagents or reactants that incorporate directing groups are not covered. These methods represent an emerging alternative to classical multi-step protocols for ketone construction that exploit premetalated reagents, and/or steps devoted to redox manipulations and carboxylic acid derivatization.

15.
Chem Sci ; 13(43): 12625-12633, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36516346

RESUMO

Ruthenium-catalyzed hydrogen auto-transfer reactions for the direct enantioselective conversion of lower alcohols to higher alcohols are surveyed. These processes enable completely atom-efficient carbonyl addition from alcohol proelectrophiles in the absence of premetalated reagents or metallic reductants. Applications in target-oriented synthesis are highlighted, and a brief historical perspective on ruthenium-catalyzed hydrogen transfer processes is given.

16.
Angew Chem Int Ed Engl ; 61(52): e202214786, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36322115

RESUMO

Neaumycin B is a femtomolar inhibitor of U87 human glioblastoma. Using a newly developed anti-diastereoselective ruthenium-catalyzed butadiene-mediated crotylation of primary alcohol proelectrophiles via hydrogen auto-transfer, as well as a novel variant of the catalytic asymmetric vinylogous Mukaiyama aldol (VMA) reaction applicable to linear aliphatic aldehydes and terminally methylated dienyl ketene acetals, preparation of the key C1-C19 and C23-C35 substructures of neaumycin B is achieved in 12 and 7 steps (LLS), respectively.


Assuntos
Rutênio , Humanos , Estereoisomerismo , Butadienos , Aldeídos/química , Catálise
17.
Angew Chem Int Ed Engl ; 61(49): e202212814, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36201364

RESUMO

Iodide-bound ruthenium-JOSIPHOS complexes catalyze the redox-neutral C-C coupling of primary alcohols with methylallene (1,2-butadiene) or 1,3-butadiene to form products of anti-crotylation with good to excellent levels of diastereo- and enantioselectivity. Distinct from other methods, direct crotylation of primary alcohols in the presence of unprotected secondary alcohols is possible, enabling generation of spirastrellolide B (C9-C15) and leucascandrolide A (C9-C15) substructures in significantly fewer steps than previously possible.


Assuntos
Rutênio , Rutênio/química , Butadienos/química , Hidrogênio/química , Estereoisomerismo , Álcoois/química , Catálise , Etanol , Estrutura Molecular
18.
ACS Catal ; 12(6): 3660-3668, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36092640

RESUMO

The mechanism of π-allyliridium C,O-benzoate-catalyzed allylic amination was studied by (a) reaction progress kinetic analysis (RPKA), (b) tandem ESI-MS analysis, and (c) computational studies involving density functional theory (DFT) calculations. Reaction progress kinetic analysis (RPKA) reveals a zero-order dependence on allyl acetate, first-order dependence on catalyst and fractional-order dependence on amine. These data corroborate rapid ionization of the allylic acetate followed by turnover limiting C-N bond formation. To illuminate the origins of the 0.4 kinetic order dependence on amine, ESI-MS analyses of quaternary ammonium-labelled piperazine with multistage collision induced dissociation (CID) were conducted that corroborate intervention of cesium-bridged amine dimers that dissociate to form monomeric cesium amide nucleophiles. Computational data align with RPKA and ESI-CID-MS analyses and suggest early transition states mitigate the impact of steric factors, thus enabling formation of highly substituted C-N bonds with complete levels of branched regioselectivity. Specifically, trans-effects of the iridium complex facilitate nucleophilic attack at the more substituted allyl terminus trans to phosphorus with enantioselectivity governed by steric repulsions between the chiral bisphosphine ligand and the π-allyl of a dominant diastereomer of the stereogenic-at-metal complex. Beyond defining aspects of the mechanism of π-allyliridium C,O-benzoate-catalyzed allylic amination, these data reveal that a key feature of cesium carbonate not only lies in its enhanced basicity, but also its capacity for Lewis-acid enhanced Brønsted acidification of amines.

19.
Acc Chem Res ; 55(15): 2138-2147, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35830564

RESUMO

Cyclometalated π-allyliridium-C,O-benzoate complexes discovered in the Krische laboratory display unique amphiphilic properties, catalyzing both nucleophilic carbonyl allylation and electrophilic allylation of diverse amines as well as nitronates. Given the importance of chiral amines in FDA-approved small-molecule drugs, a collaboration with medicinal chemists at Genentech that included on-site graduate student internships was undertaken to explore and expand the scope of π-allyliridium-C,O-benzoate-catalyzed allylic amination and related processes. As described in this Account, our collective experimental studies have unlocked asymmetric allylic aminations of exceptionally broad utility and scope. Specifically, using racemic branched alkyl-substituted allylic acetate proelectrophiles, primary and secondary aliphatic or aromatic amines, including indoles, engage in highly regio- and enantioselective allylic amination. Additionally, unactivated nitronates were found to be competent nucleophilic partners for regio- and enantioselective allylic alkylation, enabling entry to ß-stereogenic α-quaternary primary amines. Notably, these π-allyliridium-C,O-benzoate-catalyzed allylic substitutions, which display complete branched regioselectivity in reactions of alkyl-substituted allyl electrophiles, complement the scope of corresponding iridium phosphoramidite-catalyzed allylic aminations, which require aryl-substituted allyl electrophiles to promote high levels of branched regioselectivity. Computational, kinetic, ESI-CID-MS, and isotopic labeling studies were undertaken to understand the mechanism of these processes, including the origins of regio- and enantioselectivity. Isotopic labeling studies suggest that C-N bond formation occurs through outer-sphere addition to the π-allyl. DFT calculations corroborate C-N bond formation via outer-sphere addition and suggest that early transition states and distinct trans effects of diastereomeric chiral-at-iridium π-allyl complexes render the reaction less sensitive to steric effects, accounting for complete levels of branched regioselectivity in reactions of hindered amine and nitronate nucleophiles. Reaction progress kinetic analysis (RPKA) reveals a zero-order dependence on allyl acetate, a first-order dependence on the catalyst, and a fractional-order dependence on the amine. As corroborated by ESI-CID-MS analysis, the 0.4 kinetic order dependence on the amine may reflect the intervention of cesium-bridged amine dimers, which dissociate to form monomeric cesium amide nucleophiles. Hence, the requirement of cesium carbonate (vs lower alkali metal carbonates) in these processes may reside in cesium's capacity for Lewis acid-enhanced Brønsted acidification of the amine pronucleophile. Beyond the development of catalytic processes for the synthesis of novel chiral amines, the present research was conducted by graduate students who benefited from career development experiences associated with training in both academic and industrial laboratories.


Assuntos
Aminas , Irídio , Alquilação , Aminas/química , Benzoatos , Catálise , Césio , Humanos , Irídio/química , Cinética , Estereoisomerismo , Estudantes
20.
J Am Chem Soc ; 144(19): 8861-8869, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35503919

RESUMO

The first enantioselective ruthenium-catalyzed carbonyl vinylations via hydrogen autotransfer are described. Using a ruthenium-JOSIPHOS catalyst, primary alcohols 2a-2m and 2-butyne 1a are converted to chiral allylic alcohols 3a-3m with excellent levels of absolute stereocontrol. Notably, 1°,2°-1,3-diols participate in site-selective C-C coupling, enabling asymmetric carbonyl vinylation beyond premetalated reagents, exogenous reductants, or hydroxyl protecting groups. Using 2-propanol as a reductant, aldehydes dehydro-2a, 2l participate in highly enantioselective 2-butyne-mediated vinylation under otherwise identical reaction conditions. Regio-, stereo-, and site-selective vinylations mediated by 2-pentyne 1b to form adducts 3n, 3o, and epi-3o also are described. The tiglyl alcohol motif obtained upon butyne-mediated vinylation, which is itself found in diverse secondary metabolites, may be converted to commonly encountered polyketide stereodiads, -triads, and -tetrads, as demonstrated by the formation of adducts 4a-4d. The collective mechanistic studies, including deuterium labeling experiments, corroborate a catalytic cycle involving alcohol dehydrogenation to form a transient aldehyde and a ruthenium hydride, which engages in alkyne hydrometalation to form a nucleophilic vinylruthenium species that enacts carbonyl addition. A stereochemical model for carbonyl addition invoking formyl CH···I[Ru] and CH···O≡C[Ru] hydrogen bonds is proposed based on prior calculations and crystallographic data.


Assuntos
Rutênio , Álcoois/química , Aldeídos/química , Catálise , Hidrogênio/química , Rutênio/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...