Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 360: 124643, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097258

RESUMO

Plant protection products (PPPs), which are frequently used in agriculture, can be major stressors for honeybees. They have been found abundantly in the beehive, particularly in pollen. Few studies have analysed effects on honeybee larvae, and little is known about effects of insecticide-fungicide-mixtures, although this is a highly realistic exposure scenario. We asked whether the combination of a frequently used insecticide and fungicides would affect developing bees. Honeybee larvae (Apis mellifera carnica) were reared in vitro on larval diets containing different PPPs at two concentrations, derived from residues found in pollen. We used the neonicotinoid acetamiprid, the combined fungicides boscalid/dimoxystrobin and the mixture of all three substances. Mortality was assessed at larval, pupal, and adult stages, and the size and weight of newly emerged bees were measured. The insecticide treatment in higher concentrations significantly reduced larval and adult survival. Interestingly, survival was not affected by the high concentrated insecticide-fungicides-mixture. However, negative synergistic effects on adult survival were caused by the low concentrated insecticide-fungicides-mixture, which had no effect when applied alone. The lower concentrated combined fungicides led to significantly lighter adult bees, although the survival was unaffected. Our results suggest that environmental relevant concentrations can be harmful to honeybees. To fully understand the interaction of different PPPs, more combinations and concentrations should be studied in social and solitary bees with possibly different sensitivities.

2.
Ecol Evol ; 11(12): 7700-7712, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188845

RESUMO

Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low-quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro.

3.
Insects ; 13(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35055848

RESUMO

In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees.

4.
Chem Senses ; 45(8): 655-666, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-32968780

RESUMO

Honeybees rely on nectar as their main source of carbohydrates. Sucrose, glucose, and fructose are the main components of plant nectars. Intriguingly, honeybees express only 3 putative sugar receptors (AmGr1, AmGr2, and AmGr3), which is in stark contrast to many other insects and vertebrates. The sugar receptors are only partially characterized. AmGr1 detects different sugars including sucrose and glucose. AmGr2 is assumed to act as a co-receptor only, while AmGr3 is assumedly a fructose receptor. We show that honeybee gustatory receptor AmGr3 is highly specialized for fructose perception when expressed in Xenopus oocytes. When we introduced nonsense mutations to the respective AmGr3 gene using CRISPR/Cas9 in eggs of female workers, the resulting mutants displayed almost a complete loss of responsiveness to fructose. In contrast, responses to sucrose were normal. Nonsense mutations introduced by CRISPR/Cas9 in honeybees can thus induce a measurable behavioral change and serve to characterize the function of taste receptors in vivo. CRISPR/Cas9 is an excellent novel tool for characterizing honeybee taste receptors in vivo. Biophysical receptor characterization in Xenopus oocytes and nonsense mutation of AmGr3 in honeybees unequivocally demonstrate that this receptor is highly specific for fructose.


Assuntos
Abelhas/genética , Abelhas/fisiologia , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Mutagênese , Mutação , Paladar/genética , Paladar/fisiologia , Animais , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA