Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
J Am Chem Soc ; 146(1): 946-953, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154120

RESUMO

Hyperpolarized (HP) carbon-13 [13C] enables the specific investigation of dynamic metabolic and physiologic processes via in vivo MRI-based molecular imaging. As the leading HP metabolic agent, [1-13C]pyruvate plays a pivotal role due to its rapid tissue uptake and central role in cellular energetics. Dissolution dynamic nuclear polarization (d-DNP) is considered the gold standard method for the production of HP metabolic probes; however, development of a faster, less expensive technique could accelerate the translation of metabolic imaging via HP MRI to routine clinical use. Signal Amplification by Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) achieves rapid hyperpolarization by using parahydrogen (p-H2) as the source of nuclear spin order. Currently, SABRE is clinically limited due to the toxicity of the iridium catalyst, which is crucial to the SABRE process. To mitigate Ir contamination, we introduce a novel iteration of the SABRE catalyst, incorporating bis(polyfluoroalkylated) imidazolium salts. This novel perfluorinated SABRE catalyst retained polarization properties while exhibiting an enhanced hydrophobicity. This modification allows the easy removal of the perfluorinated SABRE catalyst from HP [1-13C]-pyruvate after polarization in an aqueous solution, using the ReD-SABRE protocol. The residual Ir content after removal was measured via ICP-MS at 177 ppb, which is the lowest reported to date for pyruvate and is sufficiently safe for use in clinical investigations. Further improvement is anticipated once automated processes for delivery and recovery are initiated. SABRE-SHEATH using the perfluorinated SABRE catalyst can become an attractive low-cost alternative to d-DNP to prepare biocompatible HP [1-13C]-pyruvate formulations for in vivo applications in next-generation molecular imaging modalities.


Assuntos
Irídio , Ácido Pirúvico , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Água
2.
Magn Reson Med ; 91(1): 413-423, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676121

RESUMO

PURPOSE: In this study, we compared two triarylmethyl (TAM) spin probes, Ox071 and Ox063 for their efficacy in measuring tissue oxygen levels under hypoxic and normoxic conditions by R2 *-based EPR oximetry. METHODS: The R2 * dependencies on the spin probe concentration and oxygen level were calibrated using deoxygenated 1, 2, 5, and 10 mM standard solutions and 2 mM solutions saturated at 0%, 2%, 5%, 10%, and 21% of oxygen. For the hypoxic model, in vivo imaging of a MIA PaCa-2 tumor implanted in the hind leg of a mouse was performed on successive days by R2 *-based EPR oximetry using either Ox071 or Ox063. For the normoxic model, renal imaging of healthy athymic mice was performed using both spin probes. The 3D images were reconstructed by single point imaging and multi-gradient technique was used to determine R2 * maps. RESULTS: The signal intensities of Ox071 were approximately three times greater than that of Ox063 in the entire partial pressure of oxygen (pO2 ) range investigated. The histograms of the tumor pO2 images were skewed for both spin probes, and Ox071 showed more frequency counts at pO2 > 32 mm Hg. In the normoxic kidney model, there was a clear delineation between the high pO2 cortex and the low pO2 medulla regions. The histogram of high-resolution kidney oximetry image using Ox071 was nearly symmetrical and frequency counts were seen up to 55 mm Hg, which were missed in Ox063 imaging. CONCLUSION: As an oximetric probe, Ox071 has clear advantages over Ox063 in terms of sensitivity and the pO2 dynamic range.


Assuntos
Neoplasias , Oximetria , Camundongos , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oximetria/métodos , Oxigênio , Imageamento Tridimensional
3.
Sci Rep ; 13(1): 14699, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679461

RESUMO

In vivo deuterated water (2H2O) labeling leads to deuterium (2H) incorporation into biomolecules of proliferating cells and provides the basis for its use in cell kinetics research. We hypothesized that rapidly proliferating cancer cells would become preferentially labeled with 2H and, therefore, could be visualized by deuterium magnetic resonance imaging (dMRI) following a brief period of in vivo systemic 2H2O administration. We initiated systemic 2H2O administration in two xenograft mouse models harboring either human colorectal, HT-29, or pancreatic, MiaPaCa-2, tumors and 2H2O level of ~ 8% in total body water (TBW). Three schemas of 2H2O administration were tested: (1) starting at tumor seeding and continuing for 7 days of in vivo growth with imaging on day 7, (2) starting at tumor seeding and continuing for 14 days of in vivo growth with imaging on day 14, and (3) initiation of labeling following a week of in vivo tumor growth and continuing until imaging was performed on day 14. Deuterium chemical shift imaging of the tumor bearing limb and contralateral control was performed on either day 7 of 14 after tumor seeding, as described. After 14 days of in vivo tumor growth and 7 days of systemic labeling with 2H2O, a clear deuterium contrast was demonstrated between the xenografts and normal tissue. Labeling in the second week after tumor implantation afforded the highest contrast between neoplastic and healthy tissue in both models. Systemic labeling with 2H2O can be used to create imaging contrast between tumor and healthy issue, providing a non-radioactive method for in vivo cancer imaging.


Assuntos
Imageamento por Ressonância Magnética , Inoculação de Neoplasia , Humanos , Animais , Camundongos , Xenoenxertos , Deutério , Transplante Heterólogo , Administração Cutânea , Modelos Animais de Doenças
4.
Clin Cancer Res ; 29(21): 4479-4491, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37616468

RESUMO

PURPOSE: Deregulated metabolism in cancer cells represents a vulnerability that may be therapeutically exploited to benefit patients. One such target is nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage pathway. NAMPT is necessary for efficient NAD+ production and may be exploited in cells with increased metabolic demands. We have identified NAMPT as a dependency in rhabdomyosarcoma (RMS), a malignancy for which novel therapies are critically needed. Here we describe the effect of NAMPT inhibition on RMS proliferation and metabolism in vitro and in vivo. EXPERIMENTAL DESIGN: Assays of proliferation and cell death were used to determine the effects of pharmacologic NAMPT inhibition in a panel of ten molecularly diverse RMS cell lines. Mechanism of the clinical NAMPTi OT-82 was determined using measures of NAD+ and downstream NAD+-dependent functions, including energy metabolism. We used orthotopic xenograft models to examine tolerability, efficacy, and drug mechanism in vivo. RESULTS: Across all ten RMS cell lines, OT-82 depleted NAD+ and inhibited cell growth at concentrations ≤1 nmol/L. Significant impairment of glycolysis was a universal finding, with some cell lines also exhibiting diminished oxidative phosphorylation. Most cell lines experienced profound depletion of ATP with subsequent irreversible necrotic cell death. Importantly, loss of NAD and glycolytic activity were confirmed in orthotopic in vivo models, which exhibited complete tumor regressions with OT-82 treatment delivered on the clinical schedule. CONCLUSIONS: RMS is highly vulnerable to NAMPT inhibition. These findings underscore the need for further clinical study of this class of agents for this malignancy.


Assuntos
NAD , Rabdomiossarcoma , Humanos , NAD/metabolismo , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Pirazóis , Necrose , Rabdomiossarcoma/tratamento farmacológico , Linhagem Celular Tumoral
5.
Antioxid Redox Signal ; 39(7-9): 432-444, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37051681

RESUMO

Aims: Pancreatic ductal adenocarcinomas (PDACs) form hypovascular and hypoxic tumors, which are difficult to treat with current chemotherapy regimens. Gemcitabine (GEM) is often used as a first-line treatment for PDACs but has issues with chemoresistance and penetration in the interior of the tumor. Evofosfamide, a hypoxia-activated prodrug, has been shown to be effective in combination with GEM, although the mechanism of each drug on the other has not been established. We used mouse xenografts from two cell lines (MIA Paca-2 and SU.86.86) with different tumor microenvironmental characteristics to probe the action of each drug on the other. Results: GEM treatment enhanced survival times in mice with SU.86.86 leg xenografts (hazard ratio [HR] = 0.35, p = 0.03) but had no effect on MIA Paca-2 mice (HR = 0.91, 95% confidence interval = 0.37-2.25, p = 0.84). Conversely, evofosfamide did not improve survival times in SU.86.86 mice to a statistically significant degree (HR = 0.57, p = 0.22). Electron paramagnetic resonance imaging showed that oxygenation worsened in MIA Paca-2 tumors when treated with GEM, providing a direct mechanism for the activation of the hypoxia-activated prodrug evofosfamide by GEM. Sublethal amounts of either treatment enhanced the toxicity of other treatment in vitro in SU.86.86 but not in MIA Paca-2. By the biomarker γH2AX, combination treatment increased the number of double-stranded DNA lesions in vitro for SU.86.86 but not MIA Paca-2. Innovation and Conclusion: The synergy between GEM and evofosfamide appears to stem from the dual action of GEMs effect on tumor vasculature and inhibition by GEM of the homologous recombination DNA repair process. Antioxid. Redox Signal. 39, 432-444.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pró-Fármacos , Humanos , Animais , Camundongos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Xenoenxertos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Reparo de DNA por Recombinação , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Hipóxia/tratamento farmacológico , Neoplasias Pancreáticas
6.
Metabolites ; 13(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36676994

RESUMO

Imaging tumor microenvironments such as hypoxia, oxygenation, redox status, and/or glycolytic metabolism in tissues/cells is useful for diagnostic and prognostic purposes. New imaging modalities are under development for imaging various aspects of tumor microenvironments. Electron Paramagnetic Resonance Imaging (EPRI) though similar to NMR/MRI is unique in its ability to provide quantitative images of pO2 in vivo. The short electron spin relaxation times have been posing formidable challenge to the technology development for clinical application. With the availability of the narrow line width trityl compounds, pulsed EPR imaging techniques were developed for pO2 imaging. EPRI visualizes the exogenously administered spin probes/contrast agents and hence lacks the complementary morphological information. Dynamic nuclear polarization (DNP), a phenomenon that transfers the high electron spin polarization to the surrounding nuclear spins (1H and 13C) opened new capabilities in molecular imaging. DNP of 13C nuclei is utilized in metabolic imaging of 13C-labeled compounds by imaging specific enzyme kinetics. In this article, imaging strategies mapping physiologic and metabolic aspects in vivo are reviewed within the framework of their application in cancer research, highlighting the potential and challenges of each of them.

7.
J Radiat Res ; 64(1): 24-32, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36253079

RESUMO

Non-lethal doses of ionizing radiation (IR) delivered to humans because of terrorist events, nuclear accidents or radiotherapy can result in carcinogenesis. Means of protecting against carcinogenesis are lacking. We questioned the role of the gut microbiome in IR-induced carcinogenesis. The gut microbiome was modulated by administering broad spectrum antibiotics (Ab) in the drinking water. Mice were given Ab 3 weeks before and 3 weeks after 3 Gy total body irradiation (TBI) or for 6 weeks one month after TBI. Three weeks of Ab treatment resulted in a 98% reduction in total 16S rRNA counts for 4 out of 6 of the phylum groups detected. However, 3 more weeks of Ab treatment (6 weeks total) saw an expansion in the phylum groups Proteobacteria and Actinobacteria. The Ab treatment altered the bacteria diversity in the gut, and shortened the lifespan when Ab were administered before and after TBI. Mortality studies indicated that the adverse Ab lifespan effects were due to a decrease in the time in which solid tumors started to appear and not to any changes in hematopoietic or benign tumors. In contrast, when Ab were administered one month after TBI, lifespan was unchanged compared to the control TBI group. Use of broad-spectrum antibiotics to simulate the germ-free condition did not afford an advantage on carcinogenesis or lifespan.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Animais , RNA Ribossômico 16S/genética , Carcinogênese , Irradiação Corporal Total/efeitos adversos , Antibacterianos/farmacologia
8.
Anal Chem ; 94(39): 13422-13431, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36136056

RESUMO

α-Ketoglutarate is a key biomolecule involved in a number of metabolic pathways─most notably the TCA cycle. Abnormal α-ketoglutarate metabolism has also been linked with cancer. Here, isotopic labeling was employed to synthesize [1-13C,5-12C,D4]α-ketoglutarate with the future goal of utilizing its [1-13C]-hyperpolarized state for real-time metabolic imaging of α-ketoglutarate analytes and its downstream metabolites in vivo. The signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH) hyperpolarization technique was used to create 9.7% [1-13C] polarization in 1 minute in this isotopologue. The efficient 13C hyperpolarization, which utilizes parahydrogen as the source of nuclear spin order, is also supported by favorable relaxation dynamics at 0.4 µT field (the optimal polarization transfer field): the exponential 13C polarization buildup constant Tb is 11.0 ± 0.4 s whereas the 13C polarization decay constant T1 is 18.5 ± 0.7 s. An even higher 13C polarization value of 17.3% was achieved using natural-abundance α-ketoglutarate disodium salt, with overall similar relaxation dynamics at 0.4 µT field, indicating that substrate deuteration leads only to a slight increase (∼1.2-fold) in the relaxation rates for 13C nuclei separated by three chemical bonds. Instead, the gain in polarization (natural abundance versus [1-13C]-labeled) is rationalized through the smaller heat capacity of the "spin bath" comprising available 13C spins that must be hyperpolarized by the same number of parahydrogen present in each sample, in line with previous 15N SABRE-SHEATH studies. Remarkably, the C-2 carbon was not hyperpolarized in both α-ketoglutarate isotopologues studied; this observation is in sharp contrast with previously reported SABRE-SHEATH pyruvate studies, indicating that the catalyst-binding dynamics of C-2 in α-ketoglutarate differ from that in pyruvate. We also demonstrate that 13C spectroscopic characterization of α-ketoglutarate and pyruvate analytes can be performed at natural 13C abundance with an estimated detection limit of 80 micromolar concentration × *%P13C. All in all, the fundamental studies reported here enable a wide range of research communities with a new hyperpolarized contrast agent potentially useful for metabolic imaging of brain function, cancer, and other metabolically challenging diseases.


Assuntos
Ácidos Cetoglutáricos , Teofilina , Catálise , Meios de Contraste , Ácido Pirúvico
9.
NMR Biomed ; 35(10): e4783, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35661282

RESUMO

Reoxygenation has a significant impact on the tumor response to radiotherapy. With developments in radiotherapy technology, the relevance of the reoxygenation phenomenon in treatment efficacy has been a topic of interest. Evaluating the reoxygenation in the tumor microenvironment throughout the course of radiation therapy is important in developing effective treatment strategies. In the current study, we used electron paramagnetic resonance imaging (EPRI) to directly map and quantify the partial oxygen pressure (pO2 ) in tumor tissues. Human colorectal cancer cell lines, HT29 and HCT116, were used to induce tumor growth in female athymic nude mice. Tumors were irradiated with 3, 10, or 20 Gy using an x-ray irradiator. Prior to each EPRI scan, magnetic resonance imaging (MRI) was performed to obtain T2-weighted anatomical images for reference. The differences in the mean pO2 were determined through two-tailed Student's t-test and one-way analysis of variance. The median pO2 60 min after irradiation was found to be lower in HCT116 than in HT29 (9.1 ± 1.5 vs. 14.0 ± 1.0 mmHg, p = 0.045). There was a tendency for delayed and incomplete recovery of pO2 in the HT29 tumor when a higher dose of irradiation (10 and 20 Gy) was applied. Moreover, there was a dose-dependent increase in the hypoxic areas (pO2  < 10 mmHg) 2 and 24 h after irradiation in all groups. In addition, an area that showed pO2 fluctuation between hypoxia and normoxia (pO2  > 10 mmHg) was also identified surrounding the region with stable hypoxia, and it slightly enlarged after recovery from acute hypoxia. In conclusion, we demonstrated the reoxygenation phenomenon in an in vivo xenograft model study using EPRI. These findings may lead to new knowledge regarding the reoxygenation process and possibilities of a new radiation therapy concept, namely, reoxygenation-based radiation therapy.


Assuntos
Hipóxia , Neoplasias , Animais , Hipóxia Celular , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Feminino , Humanos , Camundongos , Camundongos Nus , Oxigênio/metabolismo , Microambiente Tumoral
10.
Neoplasia ; 30: 100793, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35523073

RESUMO

PURPOSE: PEGylated human hyaluronidase (PEGPH20) enzymatically depletes hyaluronan, an important component of the extracellular matrix, increasing the delivery of therapeutic molecules. Combinations of chemotherapy and PEGPH20, however, have been unsuccessful in Phase III clinical trials. We hypothesize that by increasing tumor oxygenation by improving vascular patency and perfusion, PEGPH20 will also act as a radiosensitization agent. EXPERIMENTAL DESIGN: The effect of PEGPH20 on radiation treatment was analyzed with respect to tumor growth, survival time, p02, local blood volume, and the perfusion/permeability of blood vessels in a human pancreatic adenocarcinoma BxPC3 mouse model overexpressing hyaluronan synthase 3 (HAS3). RESULTS: Mice overexpressing HAS3 developed fast growing, radiation resistant tumors that became rapidly more hypoxic as time progressed. Treatment with PEGPH20 increased survival times when used in combination with radiation therapy, significantly more than either radiation therapy or PEGPH20 alone. In mice that overexpressed HAS3, EPR imaging showed an increase in local pO2 that could be linked to increases in perfusion/permeability and local blood volume immediately after PEGPH20 treatment. Hyperpolarized [1-13C] pyruvate suggested PEGPH20 caused a metabolic shift towards decreased glycolytic flux. These effects were confined to the mice overexpressing HAS3 - no effect of PEGPH20 on survival, radiation treatment, or pO2 was seen in wild type BxPC3 tumors. CONCLUSIONS: PEGPH20 may be useful for radiosensitization of pancreatic cancer but only in the subset of tumors with substantial hyaluronan accumulation. The response of the treatment may potentially be monitored by non-invasive imaging of the hemodynamic and metabolic changes in the tumor microenvironment.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Animais , Xenoenxertos , Humanos , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/farmacologia , Hialuronoglucosaminidase/uso terapêutico , Camundongos , Imagem Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Microambiente Tumoral , Neoplasias Pancreáticas
11.
Sci Adv ; 8(13): eabj2667, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353577

RESUMO

Dynamic nuclear polarization (DNP) is a cutting-edge technique that markedly enhances the detection sensitivity of molecules using nuclear magnetic resonance (NMR)/magnetic resonance imaging (MRI). This methodology enables real-time imaging of dynamic metabolic status in vivo using MRI. To expand the targetable metabolic reactions, there is a demand for developing exogenous, i.e., artificially designed, DNP-NMR molecular probes; however, complying with the requirements of practical DNP-NMR molecular probes is challenging because of the lack of established design guidelines. Here, we report Ala-[1-13C]Gly-d2-NMe2 as a DNP-NMR molecular probe for in vivo detection of aminopeptidase N activity. We developed this probe rationally through precise structural investigation, calculation, biochemical assessment, and advanced molecular design to achieve rapid and detectable responses to enzyme activity in vivo. With the fabricated probe, we successfully detected enzymatic activity in vivo. This report presents a comprehensive approach for the development of artificially derived, practical DNP-NMR molecular probes through structure-guided molecular design.

13.
Antioxid Redox Signal ; 36(1-3): 144-159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428981

RESUMO

Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.


Assuntos
Hipóxia , Tomografia por Emissão de Pósitrons , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Oxigênio
14.
Chemphyschem ; 23(2): e202100839, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34813142

RESUMO

Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13 C1 spins of [1-13 C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2 O. Order-unity 13 C (>50 %) polarization of catalyst-bound [1-13 C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13 C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3 OD. Efficient 13 C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s-1 versus ∼0.1 s-1 , respectively, for a 6 mM catalyst-[1-13 C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13 C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13 C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.


Assuntos
Ácido Pirúvico , Água , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio , Água/química
15.
Free Radic Biol Med ; 178: 380-390, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883252

RESUMO

The nitroxide, Tempol, prevents obesity related changes in mice fed a high fat diet (HFD). The purpose of this study was to gain insight into the mechanisms that result in such changes by Tempol in female C3H mice. Microarray methodology, Western blotting, bile acid analyses, and gut microbiome sequencing were used to identify multiple genes, proteins, bile acids, and bacteria that are regulated by Tempol in female C3H mice on HFD. The effects of antibiotics in combination with Tempol on the gut microflora were also studied. Adipose tissue, from Tempol treated mice, was analyzed using targeted gene microarrays revealing up-regulation of fatty acid metabolism genes (Acadm and Acadl > 4-fold, and Acsm3 and Acsm5 > 10-fold). Gene microarray studies of liver tissue from mice switched from HFD to Tempol HFD showed down-regulation of fatty acid synthesis genes and up-regulation of fatty acid oxidation genes. Analyses of proteins involved in obesity revealed that the expression of aldehyde dehydrogenase 1A1 (ALDH1A1) and fasting induced adipose factor/angiopoietin-like protein 4 (FIAF/ANGPTL4) was altered by Tempol HFD. Bile acid studies revealed increases in cholic acid (CA) and deoxycholic acid (DCA) in both the liver and serum of Tempol treated mice. Tempol HFD effect on the gut microbiome composition showed an increase in the population of Akkermansia muciniphila, a bacterial species known to be associated with a lean, anti-inflammatory phenotype. Antibiotic treatment significantly reduced the total level of bacterial numbers, however, Tempol was still effective in reducing the HFD weight gain. Even after antibiotic treatment Tempol still positively influenced several bacterial species such as as Akkermansia muciniphila and Bilophila wadsworthia. The positive effects of Tempol moderating weight gain in female mice fed a HFD involves changes to the gut microbiome, bile acids composition, and finally to changes in genes and proteins involved in fatty acid metabolism and storage.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Antioxidantes , Óxidos N-Cíclicos , Dieta Hiperlipídica/efeitos adversos , Feminino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Marcadores de Spin
16.
ACS Chem Biol ; 16(11): 2144-2150, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34554724

RESUMO

Alpha-ketoglutarate (α-KG) is a key metabolite and signaling molecule in cancer cells, but the low permeability of α-KG limits the study of α-KG mediated effects in vivo. Recently, cell-permeable monoester and diester α-KG derivatives have been synthesized for use in vivo, but many of these derivatives are not compatible for use in hyperpolarized carbon-13 nuclear magnetic resonance spectroscopy (HP-13C-MRS). HP-13C-MRS is a powerful technique that has been used to noninvasively trace labeled metabolites in real time. Here, we show that using diethyl-[1-13C]-α-KG as a probe in HP-13C-MRS allows for noninvasive tracing of α-KG metabolism in vivo.


Assuntos
Membrana Celular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Animais , Transporte Biológico , Isótopos de Carbono , Linhagem Celular Tumoral , Ácido Glutâmico/genética , Glutamina/genética , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Permeabilidade
17.
NMR Biomed ; 34(11): e4588, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34263489

RESUMO

Isocitrate dehydrogenase 1 (IDH1) mutations that generate the oncometabolite 2-hydroxyglutarate (2-HG) from α-ketoglutarate (α-KG) have been identified in many types of tumors and are an important prognostic factor in gliomas. 2-HG production can be determined by hyperpolarized carbon-13 magnetic resonance spectroscopy (HP-13 C-MRS) using [1-13 C]-α-KG as a probe, but peak contamination from naturally occurring [5-13 C]-α-KG overlaps with the [1-13 C]-2-HG peak. Via a newly developed oxidative-Stetter reaction, [1-13 C-5-12 C]-α-KG was synthesized. α-KG metabolism was measured via HP-13 C-MRS using [1-13 C-5-12 C]-α-KG as a probe. [1-13 C-5-12 C]-α-KG was synthesized in high yields, and successfully eliminated the signal from C5 of α-KG in the HP-13 C-MRS spectra. In HCT116 IDH1 R132H cells, [1-13 C-5-12 C]-α-KG allowed for unimpeded detection of [1-13 C]-2-HG. 12 C-enrichment represents a novel method to circumvent spectral overlap, and [1-13 C-5-12 C]-α-KG shows promise as a probe to study IDH1 mutant tumors and α-KG metabolism.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glutaratos/análise , Ácidos Cetoglutáricos/metabolismo , Células HCT116 , Humanos
18.
Magn Reson Med ; 86(5): 2497-2511, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34173268

RESUMO

PURPOSE: To improve hyperpolarized 13 C (HP-13 C) MRI by image denoising with a new approach, patch-based higher-order singular value decomposition (HOSVD). METHODS: The benefit of using a patch-based HOSVD method to denoise dynamic HP-13 C MR imaging data was investigated. Image quality and the accuracy of quantitative analyses following denoising were evaluated first using simulated data of [1-13 C]pyruvate and its metabolic product, [1-13 C]lactate, and compared the results to a global HOSVD method. The patch-based HOSVD method was then applied to healthy volunteer HP [1-13 C]pyruvate EPI studies. Voxel-wise kinetic modeling was performed on both non-denoised and denoised data to compare the number of voxels quantifiable based on SNR criteria and fitting error. RESULTS: Simulation results demonstrated an 8-fold increase in the calculated SNR of [1-13 C]pyruvate and [1-13 C]lactate with the patch-based HOSVD denoising. The voxel-wise quantification of kPL (pyruvate-to-lactate conversion rate) showed a 9-fold decrease in standard errors for the fitted kPL after denoising. The patch-based denoising performed superior to the global denoising in recovering kPL information. In volunteer data sets, [1-13 C]lactate and [13 C]bicarbonate signals became distinguishable from noise across captured time points with over a 5-fold apparent SNR gain. This resulted in >3-fold increase in the number of voxels quantifiable for mapping kPB (pyruvate-to-bicarbonate conversion rate) and whole brain coverage for mapping kPL . CONCLUSIONS: Sensitivity enhancement provided by this denoising significantly improved quantification of metabolite dynamics and could benefit future studies by improving image quality, enabling higher spatial resolution, and facilitating the extraction of metabolic information for clinical research.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Ácido Láctico , Ácido Pirúvico , Razão Sinal-Ruído
19.
Anal Chem ; 93(24): 8476-8483, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34102835

RESUMO

We report on a robust and low-cost parahydrogen generator design employing liquid nitrogen as a coolant. The core of the generator consists of catalyst-filled spiral copper tubing, which can be pressurized to 35 atm. Parahydrogen fraction >48% was obtained at 77 K with three nearly identical generators using paramagnetic hydrated iron oxide catalysts. Parahydrogen quantification was performed on the fly via benchtop NMR spectroscopy to monitor the signal from residual orthohydrogen-parahydrogen is NMR silent. This real-time quantification approach was also used to evaluate catalyst activation at up to 1.0 standard liter per minute flow rate. The reported inexpensive device can be employed for a wide range of studies employing parahydrogen as a source of nuclear spin hyperpolarization. To this end, we demonstrate the utility of this parahydrogen generator for hyperpolarization of concentrated sodium [1-13C]pyruvate, a metabolic contrast agent under investigation in numerous clinical trials. The reported pilot optimization of SABRE-SHEATH (signal amplification by reversible exchange-shield enables alignment transfer to heteronuclei) hyperpolarization yielded 13C signal enhancement of over 14,000-fold at a clinically relevant magnetic field of 1 T corresponding to approximately 1.2% 13C polarization-if near 100% parahydrogen would have been employed, the reported value would be tripled to 13C polarization of 3.5%.


Assuntos
Imageamento por Ressonância Magnética , Nitrogênio , Campos Magnéticos , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio
20.
Sci Rep ; 11(1): 12155, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108512

RESUMO

Drastic sensitivity enhancement of dynamic nuclear polarization is becoming an increasingly critical methodology to monitor real-time metabolic and physiological information in chemistry, biochemistry, and biomedicine. However, the limited number of available hyperpolarized 13C probes, which can effectively interrogate crucial metabolic activities, remains one of the major bottlenecks in this growing field. Here, we demonstrate [1-13C] N-acetyl cysteine (NAC) as a novel probe for hyperpolarized 13C MRI to monitor glutathione redox chemistry, which plays a central part of metabolic chemistry and strongly influences various therapies. NAC forms a disulfide bond in the presence of reduced glutathione, which generates a spectroscopically detectable product that is separated from the main peak by a 1.5 ppm shift. In vivo hyperpolarized MRI in mice revealed that NAC was broadly distributed throughout the body including the brain. Its biochemical transformation in two human pancreatic tumor cells in vitro and as xenografts differed depending on the individual cellular biochemical profile and microenvironment in vivo. Hyperpolarized NAC can be a promising non-invasive biomarker to monitor in vivo redox status and can be potentially translatable to clinical diagnosis.


Assuntos
Acetilcisteína/metabolismo , Encéfalo/metabolismo , Isótopos de Carbono/análise , Glutationa/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Proliferação de Células , Humanos , Imageamento por Ressonância Magnética , Camundongos , Oxirredução , Neoplasias Pancreáticas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...