Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(4): e4027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715184

RESUMO

Bioactive phytocompounds are crucial components in all plants. Since the time of traditional medicine, the utilization of plants has been grounded in the potential of these bioactive compounds to treat or manage specific illnesses. These natural bioactive compounds have sparked growing interest in employing medicinal plants for addressing various conditions, such as inflammatory diseases, diabetes, and cancer. This study focuses on assessing the qualitative phytochemical composition, antioxidant potential, and cytotoxic effects of blueberry (Vaccinium sect. Cyanococcus) extract using three different solvents, namely water, ethanol, and methanol. The extract exhibited notable antioxidant activities, as evidenced by DPPH and H2O2 free radical scavenging assays. The cell viability assay also demonstrated cell growth inhibition in A549 cells. Furthermore, nine specific phytocompounds sourced from existing literature were selected for molecular docking studies against CDK6 and, AMPK key protein kinases which enhance the cancer progression. The molecular docking results also revealed favorable binding scores, with a high score of -9.5 kcal/mol in CDK6 protein and a maximum score of AMPK with targets of -8.8 kcal/mol. The selected phytocompounds' pharmacodynamic properties such as ADMET also supported the study. Furthermore, rutin stated that pre-dominantly present in blueberry plants shows a potent cytotoxicity effect in A549 cells. Functional annotations by bioinformatic analysis for rutin also revealed the strong enrichment in the involvement of PI3K/AKT1/STAT, and p53 signaling pathways. Based on this analysis, the identified rutin and other compounds hold a promising anticancer activity. Overall, the comprehensive evaluation of both in vitro and in silico data suggests that the Vaccinium sect. Cyanococcus extract could serve as a valuable source of pharmaceutical agents and may prove effective in future therapeutic applications.


Assuntos
Mirtilos Azuis (Planta) , Proliferação de Células , Receptores ErbB , Estresse Oxidativo , Extratos Vegetais , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína Supressora de Tumor p53 , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Mirtilos Azuis (Planta)/química , Estresse Oxidativo/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais
2.
Int J Biol Macromol ; 242(Pt 2): 124917, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207753

RESUMO

Herbicides have been linked to a higher risk of developing diabetes. Certain herbicides also operate as environmental toxins. Glyphosate is a popular and extremely effective herbicide for weed control in grain crops that inhibits the shikimate pathway. It has been shown to negatively influence endocrine function. Few studies have demonstrated that glyphosate exposure results in hyperglycemic and insulin resistance; but the molecular mechanism underlying the diabetogenic potential of glyphosate on skeletal muscle, a primary organ that includes insulin-mediated glucose disposal, is unknown. In this study, we aimed to evaluate the impact of glyphosate on the detrimental changes in the insulin metabolic signaling in the gastrocnemius muscle. In vivo results showed that glyphosate exposure caused hyperglycemia, dyslipidemia, increased glycosylated hemoglobin (HbA1c), liver function, kidney function profile, and oxidative stress markers in a dose-dependent fashion. Conversely, hemoglobin and antioxidant enzymes were significantly reduced in glyphosate-induced animals indicating its toxicity is linked to induce insulin resistance. The histopathology of the gastrocnemius muscle and RT-PCR analysis of insulin signaling molecules revealed glyphosate-induced alteration in the expression of IR, IRS-1, PI3K, Akt, ß-arrestin-2, and GLUT4 mRNA. Lastly, molecular docking and dynamics simulations confirmed that glyphosate showed a high binding affinity with target molecules such as Akt, IRS-1, c-Src, ß-arrestin-2, PI3K, and GLUT4. The current work provides experimental proof that glyphosate exposure has a deleterious effect on the IRS-1/PI3K/Akt signaling pathways, which in turn causes the skeletal muscle to become insulin resistant and eventually develop type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Simulação de Acoplamento Molecular , Insulina/metabolismo , Músculo Esquelético , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia , Glifosato
3.
Curr Issues Mol Biol ; 45(2): 852-884, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36826001

RESUMO

The prevalence of obesity in contemporary society has brought attention to how serious it is all around the world. Obesity, a proinflammatory condition defined by hypertrophied adipocytes and immune cells that reside in adipose tissue, is characterized by elevated circulating levels of proinflammatory cytokines. The pro-inflammatory mediators trigger a number of inflammatory pathways and affect the phosphorylation of a number of insulin-signaling pathways in peripheral tissues. In this work, we pointed the outcome of the leaves of Carica papaya (C. papaya) on the inflammatory molecules by in vivo and in silico analysis in order to prove its mechanisms of action. Adipocytokines, antioxidant enzymes, gene and protein expression of pro-inflammatory signaling molecules (mTOR, TNF-α, IL-1ß, IL-6 and IKKß) by q-RT-PCR and immunohistochemistry, as well as histopathological analysis, in adipose tissues were carried out. C. papaya reinstated the levels of adipocytokines, antioxidant enzymes and mRNA levels of mTOR, TNF-α, IL-1ß, IL-6 and IKKß in the adipose tissues of type 2 diabetic rats. Molecular docking and dynamics simulation studies revealed that caffeic acid, transferulic acid and quercetin had the top hit rates against IKKß, TNF-α, IL-6, IL-1ß, and mTOR. This study concludes that C. papaya put back the altered effects in fatty tissue of type 2 diabetic rats by restoring the adipocytokines and the gene expression.

4.
Antioxidants (Basel) ; 11(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36552644

RESUMO

Glyphosate, an endocrine disruptor, has an adverse impact on human health through food and also has the potential to produce reactive oxygen species (ROS), which can lead to metabolic diseases. Glyphosate consumption from food has been shown to have a substantial part in insulin resistance, making it a severe concern to those with type 2 diabetes (T2DM). However, minimal evidence exists on how glyphosate impacts insulin-mediated glucose oxidation in the liver. Hence the current study was performed to explore the potential of glyphosate toxicity on insulin signaling in the liver of experimental animals. For 16 weeks, male albino Wistar rats were given 50 mg, 100 mg and 250 mg/kg b. wt. of glyphosate orally. In the current study, glyphosate exposure group was linked to a rise in fasting sugar and insulin as well as a drop in serum testosterone. At the same time, in a dose dependent fashion, glyphosate exposure showed alternations in glucose metabolic enzymes. Glyphosate exposure resulted in a raise in H2O2 formation, LPO and a reduction in antioxidant levels those results in impact on membrane integrity and insulin receptor efficacy in the liver. It also registered a reduced levels of mRNA and protein expression of insulin receptor (IR), glucose transporter-2 (GLUT2) with concomitant increase in the production of proinflammatory factors such as JNK, IKKß, NFkB, IL-6, IL-1ß, and TNF-α as well as transcriptional factors like SREBP1c and PPAR-γ leading to pro-inflammation and cirrhosis in the liver which results in the development of insulin resistance and type 2 diabetes. Our present findings for the first time providing an evidence that exposure of glyphosate develops insulin resistance and type 2 diabetes by aggravating NFkB signaling pathway in liver.

6.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268696

RESUMO

Natural products in the form of functional foods have become increasingly popular due to their protective effects against life-threatening diseases, low risk of adverse effects, affordability, and accessibility. Plant components such as phytosterol, in particular, have drawn a lot of press recently due to a link between their consumption and a modest incidence of global problems, such as Type 2 Diabetes mellitus (T2DM), cancer, and cardiovascular disease. In the management of diet-related metabolic diseases, such as T2DM and cardiovascular disorders, these plant-based functional foods and nutritional supplements have unquestionably led the market in terms of cost-effectiveness, therapeutic efficacy, and safety. Diabetes mellitus is a metabolic disorder categoriszed by high blood sugar and insulin resistance, which influence major metabolic organs, such as the liver, adipose tissue, and skeletal muscle. These chronic hyperglycemia fallouts result in decreased glucose consumption by body cells, increased fat mobilisation from fat storage cells, and protein depletion in human tissues, keeping the tissues in a state of crisis. In addition, functional foods such as phytosterols improve the body's healing process from these crises by promoting a proper physiological metabolism and cellular activities. They are plant-derived steroid molecules having structure and function similar to cholesterol, which is found in vegetables, grains, nuts, olive oil, wood pulp, legumes, cereals, and leaves, and are abundant in nature, along with phytosterol derivatives. The most copious phytosterols seen in the human diet are sitosterol, stigmasterol, and campesterol, which can be found in free form, as fatty acid/cinnamic acid esters or as glycosides processed by pancreatic enzymes. Accumulating evidence reveals that phytosterols and diets enriched with them can control glucose and lipid metabolism, as well as insulin resistance. Despite this, few studies on the advantages of sterol control in diabetes care have been published. As a basis, the primary objective of this review is to convey extensive updated information on the possibility of managing diabetes and associated complications with sterol-rich foods in molecular aspects.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Fitosteróis , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta , Humanos , Fitosteróis/farmacologia , Fitosteróis/uso terapêutico , Esteróis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...