Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(1): e2300999, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37736703

RESUMO

There have been limited efforts to ligate the staple nicks in DNA origami which is crucial for their stability against thermal and mechanical treatments, and chemical and biological environments. Here, two near quantitative ligation methods are demonstrated for the native backbone linkage at the nicks in origami: i) a cosolvent dimethyl sulfoxide (DMSO)-assisted enzymatic ligation and ii) enzyme-free chemical ligation by CNBr. Both methods achieved over 90% ligation in 2D origami, only CNBr-method resulted in ≈80% ligation in 3D origami, while the enzyme-alone yielded 31-55% (2D) or 22-36% (3D) ligation. Only CNBr-method worked efficiently for 3D origami. The CNBr-mediated reaction is completed within 5 min, while DMSO-method took overnight. Ligation by these methods improved the structural stability up to 30 °C, stability during the electrophoresis and subsequent extraction, and against nuclease and cell lysate. These methods are straightforward, non-tedious, and superior in terms of cost, reaction time, and efficiency.


Assuntos
Nanoestruturas , Nanoestruturas/química , Dimetil Sulfóxido , Conformação de Ácido Nucleico , DNA/química , Endonucleases
2.
Chemistry ; 28(22): e202200839, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35344240

RESUMO

Invited for the cover of this issue are Prof. Takashi Morii and co-workers at Kyoto University and Ewha Womans University. The cover image depicts the graphical design and atomic force microscopic (AFM) images of the synthesized topologically-interlocked DNA catenane and rotaxanes inside a frame-shaped DNA origami. Read the full text of the article at 10.1002/chem.202200108.


Assuntos
DNA , Rotaxanos , Humanos , Microscopia de Força Atômica
3.
Chemistry ; 28(22): e202200108, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35218108

RESUMO

DNA minicircles exist in biological contexts, such as kinetoplast DNA, and are promising components for creating functional nanodevices. They have been used to mimic the topological features of nucleosomal DNA and to probe DNA-protein interactions such as HIV-1 and PFV integrases, and DNA gyrase. Here, we synthesized the topologically-interlocked minicircle rotaxane and catenane inside a frame-shaped DNA origami. These minicircles are 183 bp in length, constitute six individual single-stranded DNAs that are ligated to realize duplex interlocking, and adopt temporary base pairing of single strands for interlocking. To probe the DNA-protein interactions, restriction reactions were carried out on DNAs with different topologies such as free linear duplex or duplex constrained inside origami and free or topologically-interlocked minicircles. Except the free linear duplex, all tested structures were resistant to restriction digestion, indicating that the topological features of DNA, such as flexibility, curvature, and groove orientation, play a major role in DNA-protein interactions.


Assuntos
Replicação do DNA , DNA Circular , DNA , DNA de Cinetoplasto
4.
Nucleic Acids Res ; 49(14): 7884-7900, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289063

RESUMO

The low thermal stability of DNA nanostructures is the major drawback in their practical applications. Most of the DNA nanotubes/tiles and the DNA origami structures melt below 60°C due to the presence of discontinuities in the phosphate backbone (i.e., nicks) of the staple strands. In molecular biology, enzymatic ligation is commonly used to seal the nicks in the duplex DNA. However, in DNA nanotechnology, the ligation procedures are neither optimized for the DNA origami nor routinely applied to link the nicks in it. Here, we report a detailed analysis and optimization of the conditions for the enzymatic ligation of the staple strands in four types of 2D square lattice DNA origami. Our results indicated that the ligation takes overnight, efficient at 37°C rather than the usual 16°C or room temperature, and typically requires much higher concentration of T4 DNA ligase. Under the optimized conditions, up to 10 staples ligation with a maximum ligation efficiency of 55% was achieved. Also, the ligation is found to increase the thermal stability of the origami as low as 5°C to as high as 20°C, depending on the structure. Further, our studies indicated that the ligation of the staple strands influences the globular structure/planarity of the DNA origami, and the origami is more compact when the staples are ligated. The globular structure of the native and ligated origami was also found to be altered dynamically and progressively upon ethidium bromide intercalation in a concentration-dependent manner.


Assuntos
DNA Ligases/metabolismo , DNA/química , Nanoestruturas/química , Conformação de Ácido Nucleico , Temperatura , DNA/genética , DNA/metabolismo , Eletroforese em Gel de Ágar/métodos , Etídio/química , Cinética , Microscopia de Força Atômica/métodos , Desnaturação de Ácido Nucleico , Fosforilação , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA