Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Eur J Med Chem ; 271: 116450, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701714

RESUMO

The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and ß-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aß aggregation inhibition in a self- and AChE-induced Aß aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aß-induced cognitive deficits in the Aß-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aß and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Inibidores da Colinesterase , Desenho de Fármacos , Quinazolinas , Quinazolinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Ratos , Relação Estrutura-Atividade , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Dose-Resposta a Droga , Butirilcolinesterase/metabolismo , Masculino
2.
ACS Omega ; 9(16): 18169-18182, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680351

RESUMO

Alzheimer's disease (AD) is a multifactorial and emerging neurological disorder, which has invoked researchers to develop multitargeted ligands. Herein, hybrid conjugates of 5-phenyl-1,3,4-oxadiazole and piperazines were rationally designed, synthesized, and pharmacologically evaluated against hAChE, hBChE, and hBACE-1 enzymes for the management of AD. Among the series, compound 5AD comprising pyridyl substitution at terminal nitrogen of piperazine contemplated as a paramount lead compound (hAChE, IC50 = 0.103 ± 0.0172 µM, hBChE, IC50 ≥ 10 µM, and hBACE-1, IC50 = 1.342 ± 0.078 µM). Compound 5AD showed mixed-type enzyme inhibition in enzyme kinetic studies against the hAChE enzyme. In addition, compound 5AD revealed a significant displacement of propidium iodide from the peripheral anionic site (PAS) of hAChE and excellent blood-brain barrier (BBB) permeability in a parallel artificial membrane permeation assay (PAMPA). Besides, 5AD also exhibited anti-Aß aggregation activity in self- and AChE-induced thioflavin T assay. Further, compound 5AD has shown significant improvement in learning and memory (p < 0.001) against the in vivo scopolamine-induced cognitive dysfunction mice model. The ex vivo study implied that after treatment with compound 5AD, there was a decrease in AChE and malonaldehyde (MDA) levels with an increase in catalase (CAT, oxidative biomarkers) in the hippocampal brain homogenate. Hence, compound 5AD could be regarded as a lead compound and further be explored in the treatment of AD.

3.
Eur J Med Chem ; 271: 116409, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663285

RESUMO

Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), ß secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aß aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 µM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 µM) along with good anti-Aß aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 µM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aß-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Inibidores da Colinesterase , Desenho de Fármacos , Triazinas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ratos , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Estrutura Molecular , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Simulação de Acoplamento Molecular , Quinases Dyrk , Relação Dose-Resposta a Droga , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Masculino , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Butirilcolinesterase/metabolismo
4.
ACS Omega ; 9(6): 7188-7205, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371771

RESUMO

Background: Inorganic biomaterials are biologically active and are used as implants and drug delivery system. They have therapeutically active elements present in their framework that are released in the physiological milieu. Release of these dopants above the supraphysiological limit may produce adverse effects and physicochemical interactions with the loaded drugs. Therefore, this necessitates evaluating the in vivo release kinetics, biodistribution, and excretion profiles of dopants from barium-doped bioglass (BaBG) that has potential anti-inflammatory, antiulcer, and regenerative properties. Methods: In vitro leaching of Ca, Si, and Ba from BaBG was analyzed in simulated body fluid. Release kinetics post single-dose oral administration (1, 5, and 10 mg/kg) was performed in rats. Blood was collected at different time points, and pharmacokinetic parameters of released elements were calculated. The routes of excretion and biodistribution in major organs were evaluated using ICP-MS. Results: Elements were released after the oral administration of BaBG into the plasma. They showed dose-dependent release kinetics and mean residence time. Cmax was observed at 24 h for all elements, followed by a downhill fall. There was also a dose-dependent increase in the volume of distribution, and the clearance of dopants was mostly through feces. Ba and Si were biodistributed significantly in the liver, spleen, and kidneys. However, by the end of day 7, there was a leveling-off effect observed for all elements. Conclusion: All of the dopants exhibited a dose-dependent increase in release kinetics and biodistribution in vital organs. This study will help in dose optimization and understanding of various physicochemical and pharmacokinetic interactions when BaBG is used for future pharmacological studies.

5.
ACS Chem Neurosci ; 15(4): 745-771, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38327209

RESUMO

An efficient and promising method of treating complex neurodegenerative diseases like Alzheimer's disease (AD) is the multitarget-directed approach. Here in this work, a series of quinazoline derivatives (AV-1 to AV-21) were rationally designed, synthesized, and biologically evaluated as multitargeted directed ligands against human cholinesterase (hChE) and human ß-secretase (hBACE-1) that exhibit moderate to good inhibitory effects. Compounds AV-1, AV-2, and AV-3 from the series demonstrated balanced and significant inhibition against these targets. These compounds also displayed excellent blood-brain barrier permeability via the PAMPA-BBB assay. Compound AV-2 significantly displaced propidium iodide (PI) from the acetylcholinesterase-peripheral anionic site (AChE-PAS) and was found to be non-neurotoxic at the maximum tested concentration (80 µM) against differentiated SH-SY5Y cell lines. Compound AV-2 also prevented AChE- and self-induced Aß aggregation in the thioflavin T assay. Additionally, compound AV-2 significantly ameliorated scopolamine and Aß-induced cognitive impairments in the in vivo behavioral Y-maze and Morris water maze studies, respectively. The ex vivo and biochemical analysis further revealed good hippocampal AChE inhibition and the antioxidant potential of the compound AV-2. Western blot and immunohistochemical (IHC) analysis of hippocampal brain revealed reduced Aß, BACE-1, APP/Aß, and Tau molecular protein expressions levels. The pharmacokinetic analysis of compound AV-2 demonstrated significant oral absorption with good bioavailability. The in silico molecular modeling studies of lead compound AV-2 moreover demonstrated a reasonable binding profile with AChE and BACE-1 enzymes and stable ligand-protein complexes throughout the 100 ns run. Compound AV-2 can be regarded as the lead candidate and could be explored more for AD therapy.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/metabolismo , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Inibidores da Colinesterase/química , Desenho de Fármacos , Peptídeos beta-Amiloides/metabolismo , Simulação de Acoplamento Molecular
6.
J Ethnopharmacol ; 325: 117888, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336185

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (L.) Urban, is a medicinal herb with rich history of traditional use in Indian subcontinent. This herb has been valued for its diverse range of medicinal properties including memory booster, and also as a folk treatment for skin diseases, wound healing and mild diuretic. AIM OF STUDY: Aging is a gradual and continuous process of natural decay in the biological systems, including the brain. This work aims to evaluate the effectiveness of ethanolic extract of Centella asiatica (CAE) on age-associated cognitive impairments in rats, as well as the underlying mechanism. MATERIAL AND METHODS: Rats were allocated into five distinct groups of 5 animals each: Young rats (3 months old rats), middle-aged (m-aged) rats (13-14 months old), and the remaining three groups were comprised of m-aged rats treated with different concentrations of CAE, viz., 150, 300, and 450 mg/kg b. w., orally for 42 days. Y-maze, open field, novel object recognition, and elevated plus maze tests were used to assess animal behavior. The malondialdehyde (MDA), superoxide dismutase (SOD), and acetylcholinesterase (AChE) assays; and H&E staining were done in the rat brain to assess the biochemical and structural changes. CAE was also subjected to HPLC analysis, in vitro antioxidant and anti-cholinergic activity. The active compounds of CAE were docked with AChE and BuChE in molecular docking study. RESULTS: The results showed that CAE treatment improves behavioral performance; attenuates the age-associated increase in MDA content, SOD, and AChE activity; and reduces neuronal loss. In vitro study showed that CAE has concentration-dependent antioxidant and anti-AChE activity. Furthermore, the presence of Asiatic acid and Madecassic acid in CAE and their good binding with cholinergic enzymes (in silico) also suggest the anticholinergic effect of CAE. CONCLUSION: The findings of the current study show that the anticholinergic and antioxidant effects of CAE are attributable to the presence of Asiatic acid and Madecassic acid, which not only provide neuroprotection against age-associated cognitive decline but also reverse it.


Assuntos
Antioxidantes , Centella , Triterpenos Pentacíclicos , Triterpenos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Função Executiva , Acetilcolinesterase/metabolismo , Centella/química , Simulação de Acoplamento Molecular , Estresse Oxidativo , Antagonistas Colinérgicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Superóxido Dismutase/metabolismo
7.
Bioorg Chem ; 143: 107082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199142

RESUMO

The multi-target directed ligand (MTDL) discovery has been gaining immense attention in the development of therapeutics for Alzheimer's disease (AD). The strategy has been evolved as an auspicious approach suitable to combat the heterogeneity and the multifactorial nature of AD. Therefore, multi-targetable chalcone derivatives bearing N-aryl piperazine moiety were designed, synthesized, and evaluated for the treatment of AD. All the synthesized compounds were screened for thein vitro activityagainst acetylcholinesterase (AChE), butylcholinesterase (BuChE), ß-secretase-1 (BACE-1), and inhibition of amyloid ß (Aß) aggregation. Amongst all the tested derivatives, compound 41bearing unsubstituted benzylpiperazine fragment and para-bromo substitution at the chalcone scaffold exhibited balanced inhibitory profile against the selected targets. Compound 41 elicited favourable permeation across the blood-brain barrier in the PAMPA assay. The molecular docking and dynamics simulation studies revealed the binding mode analysis and protein-ligand stability ofthe compound with AChE and BACE-1. Furthermore,itameliorated cognitive dysfunctions and signified memory improvement in thein-vivobehavioural studies (scopolamine-induced amnesia model). Theex vivobiochemical analysis of mice brain homogenates established the reduced AChE and increased ACh levels. The antioxidant activity of compound 41 was accessed with the determination of catalase (CAT) and malondialdehyde (MDA) levels. The findings suggested thatcompound 41, containing a privileged chalcone scaffold, can act as a lead molecule for developing AD therapeutics.


Assuntos
Doença de Alzheimer , Chalcona , Chalconas , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Chalconas/química , Acetilcolinesterase/metabolismo , Piperazina/farmacologia , Simulação de Acoplamento Molecular , Ligantes , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Piperazinas/farmacologia , Relação Estrutura-Atividade , Desenho de Fármacos
8.
J Affect Disord ; 350: 24-38, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185385

RESUMO

BACKGROUND: Increasing evidence suggests that mitochondrial dysfunction plays a significant role in PTSD. However, the exact mechanism is still unclear. Mitochondrial dynamics could be one of the mechanisms, as it is crucial for mitochondrial homeostasis and is widely affected in traumatic situations. Mitochondrial dynamics regulate mitochondrial homeostasis via orexinergic receptors, and it is shown that antagonism of orexinergic receptors attenuates PTSD-like symptoms. Therefore, the present study aimed to determine how orexin antagonists affect mitochondrial dynamics in rats exhibiting PTSD-like symptoms. METHODS: Using rats, a stress-re-stress (SRS) model with PTSD-like symptoms was established. On day 2 (D-2), the animals were exposed to variable stressors including 2 h of restraint followed by brief mild foot shock and exposure to 4%halothane. Foot shock was performed as a re-stress from D-8 to D-32 at six-day intervals. RESULTS: SRS exposure caused PTSD-like phenotype, hypothalamic-pituitary-adrenal axis dysfunction, activation of mammalian target of rapamycin (mTOR), and mitochondrial-fission-process-1 (MTFP-1). SRS-subjected rats exhibited enhanced expression of fission-regulating proteins, including dynamin-related protein-1 and mitochondrial-fission-protein-1 and reduced expression of fusion-regulating proteins, including optic-atrophy-1 and mitofusin-2, in the amygdala. TEM analysis revealed that SRS exposure further damaged the mitochondria. Treatment with suvorexant with rapamycin significantly mitigated PTSD-like symptoms and improved mitochondrial dynamics in SRS-exposed rats. However, their combination showed a more pronounced effect. Further, suvorexant in combination with rapamycin significantly mitigated mTOR and MTFP-1 activation. Sertraline attenuated PTSD-like symptoms without affecting SRS-induced activation of mTOR and disparity in mitochondrial dynamics. Suvorexant pharmacological effects on mitochondrial biogenesis also involve the mTOR pathway. LIMITATION: The role of orexinergic pathway in SRS-induced mitochondrial mitophagy was not explored. CONCLUSIONS: Targeting both the orexinergic and mTOR pathways might exert a beneficial synergistic effect for treating PTSD.


Assuntos
Azepinas , Transtornos de Estresse Pós-Traumáticos , Triazóis , Ratos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Dinâmica Mitocondrial , Sistema Hipófise-Suprarrenal/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Mamíferos/metabolismo
9.
J Pharm Sci ; 113(3): 647-658, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37595751

RESUMO

Dimethyl fumarate (DMF) is an FDA-approved drug for treating relapsing-remitting multiple sclerosis; but it is susceptible to sublimation leading to its loss during processing. Cocrystals can protect against thermal energy via the interaction of DMF with a coformer via weak forces of interaction. With this hypothesis, we have, for the first time, prepared DMF cocrystals using the solvent evaporation method using coformers like citric acid and succinic acid screened by in-silico predictions and hydrogen bonding properties. Analysis using infra-red (IR), powder x-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and sublimation evaluation characterized cocrystals and their thermostability. Comparative analysis of the release profile has been done by dissolution and pharmacokinetic study of DMF and its cocrystals. The cocrystals have improved thermal stability and better pharmacological activities than DMF. In the safety and efficacy evaluation of the formulated cocrystals, they were found to be non-cytotoxic, antioxidant, and inhibiting IL-6 and TNF-α in PBMC induced by lipopolysaccharide (LPS). We have obtained cocrystals of DMF with improved thermal stability and better pharmacological activities than DMF.


Assuntos
Fumarato de Dimetilo , Leucócitos Mononucleares , Cristalização/métodos , Difração de Pó , Difração de Raios X , Varredura Diferencial de Calorimetria
10.
Ibrain ; 9(1): 13-31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786521

RESUMO

Alzheimer's disease is a neurodegenerative disease responsible for dementia and other neuropsychiatric symptoms. In the present study, compounds 30 and 33, developed earlier in our laboratory as selective butyrylcholinesterase inhibitors, were tested against scopolamine-induced amnesia to evaluate their pharmacodynamic effect. The efficacy of the compounds was determined by behavioral experiments using the Y-maze and the Barnes maze and neurochemical testing. Both compounds reduced the effect of scopolamine treatment in the behavioral tasks at a dose of 20 mg/kg. The results of the neurochemical experiment indicated a reduction in cholinesterase activity in the prefrontal cortex and the hippocampus. The levels of antioxidant enzymes superoxide dismutase and catalase were restored compared to the scopolamine-treated groups. The docking study on rat butyrylcholinesterase (BChE) indicated tight binding, with free energies of -9.66 and -10.23 kcal/mol for compounds 30 and 33, respectively. The two aromatic amide derivatives of 2-phenyl-2-(phenylsulfonamido) acetic acid produced stable complexes with rat BChE in the molecular dynamics investigation.

11.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37843404

RESUMO

Obesity and exposure to light at night are prevalent in modern society and associated with changes in physiology and behavior that can affect a female's ability to support offspring growth during pregnancy and lactation. A 2X3 factor study of ICR mice was conducted to determine the effect of diet [control (CON; 10% fat) or high fat (HF; 60% fat)] and exposure to regular 12 h light:dark cycles (LD) or continuous low (L5) or high (L100) lux of light on gestation length, birth litter size, milk composition and litter growth to lactation day 12. HF diet reduced birth litter size, but increased postnatal d 12 litter weight (P<0.05), whereas constant light tended to increase litter weight (P=0.07). Continuous light increased gestation length, altered dam feed intake, increased serum prolactin and increased final dam and mammary gland weight (P<0.05), while decreasing mammary ATP content and milk lactose (P<0.05). Correlation analysis indicated a positive relationship between final litter weight and mammary size, metabolic stores (e.g. maternal fat pad weight), kcal of feed intake, and gestation length (P<0.05). Although CON mice spent more time eating than HF dams, the calorically dense HF diet was related to greater rates of litter growth to peak lactation. Constant light circadian disrupting effects appear to be confounded by a potential long day photoperiod response exemplified by higher circulating levels of prolactin and increased body and mammary weight of females exposed to these conditions. Other model systems may be better to study the interacting effects of obesity and circadian disruption on reproductive competence.


Assuntos
Dieta Hiperlipídica , Prolactina , Gravidez , Feminino , Animais , Camundongos , Camundongos Endogâmicos ICR , Dieta Hiperlipídica/efeitos adversos , Prolactina/farmacologia , Reprodução , Obesidade
12.
ACS Omega ; 8(29): 26218-26230, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521634

RESUMO

Crystallization has revolutionized the field of solid-state formulations by modulating the physiochemical and release profile of active pharmaceutical ingredients (APIs). Dimethyl fumarate (DF), an FDA-approved first-line drug for relapsing-remitting multiple sclerosis, has a sublimation problem, leading to loss of the drug during its processing. To tackle this problem, DF cocrystal has been prepared by using solvent evaporation technique using nicotinamide as a coformer, which has been chosen based on in silico predictions and their ability to participate in hydrogen bonding. Fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and sublimation analysis have characterized the cocrystal and its thermostability. Comparative analysis of the release profile has been done by the dissolution and pharmacokinetic study of DF and its cocrystal. Formulated cocrystal is noncytotoxic, antioxidant and inhibits interleukin-6 and tissue necrosis factor-α in peripheral blood mononuclear cells induced by lipopolysaccharide. We have obtained a thermostable cocrystal of DF with a similar physicochemical and release profile to that of DF. The formulated cocrystal also provides a gastroprotective effect which helps counterbalance the adverse effects of DF by reducing lipid peroxidation and total nitrite levels.

13.
Eur J Med Chem ; 259: 115670, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37515920

RESUMO

Alzheimer's disease (AD) is a progressive brain disorder associated with slow loss of brain functions leading to memory failure and modest changes in behavior. The multifactorial neuropathological condition is due to a depletion of cholinergic neurons and accumulation of amyloid-beta (Aß) plaques. Recently, a multi-target-directed ligand (MTDL) strategy has emerged as a robust drug discovery tool to overcome current challenges. In this research work, we aimed to design and develop a library of triazole-bridged aryl adamantane analogs for the treatment of AD. All synthesized analogs were characterized and evaluated through various in vitro and in vivo biological studies. The optimal compounds 32 and 33 exhibited potent inhibitory activities against acetylcholinesterase (AChE) (32 - IC50 = 0.086 µM; 33 - 0.135 µM), and significant Aß aggregation inhibition (20 µM). N-methyl-d-aspartate (NMDA) receptor (GluN1-1b/GluN2B subunit combination) antagonistic activity of compounds 32 and 33 measured upon heterologous expression in Xenopus laevis oocytes showed IC50 values of 3.00 µM and 2.86 µM, respectively. The compounds possessed good blood-brain barrier permeability in the PAMPA assay and were safe for SH-SY5Y neuroblastoma (10 µM) and HEK-293 cell lines (30 µM). Furthermore, in vivo behavioral studies in rats demonstrated that both compounds improved cognitive and spatial memory impairment at a dose of 10 mg/kg oral administration. Together, our findings suggest triazole-bridged aryl adamantane as a promising new scaffold for the development of anti-Alzheimer's drugs.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Triazóis , Animais , Humanos , Ratos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Desenho de Fármacos , Células HEK293 , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia
14.
Chronobiol Int ; 40(7): 938-951, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37483020

RESUMO

Circadian rhythms of physiology, behavior, and metabolism have an endogenous 24 h period that synchronizes with environmental cycles of light/dark and food availability. Alterations in light cycles are stressful and disrupt such diurnal oscillations. Recently, we witnessed a sudden rise in studies describing the mechanisms behind the interaction between the key characteristics of mitochondrial functions, peripheral clocks, and stress responses. To our knowledge, there is no study in the suprachiasmatic nuclei (SCN) describing the dysregulated mitochondrial bioenergetics under abnormal lighting conditions, which is common in today's modern world. Thus, we aimed to investigate the existence of daily changes in mitochondrial bioenergetics (respiratory control rate, RCR), mitochondrial abundance (mtDNA/nDNA), plasma corticosterone, and to test whether disturbances in the lighting conditions might influence such rhythms. To confirm this, mice were sacrificed, mitochondria were isolated from the suprachiasmatic nuclei in the brain and blood was collected, every 3 h at various time points zeitgeber time/circadian time, (0, 3, 6, 9, 12, 15, 18, 21, and 24 h) under 12:12 h light-dark (LD, 150 lux L: 0 lux D) cycle and chronic artificial dim lighting (LL, 5 lux: 5lux) conditions, of a 24 h period, respectively. Our results demonstrate the existence of robust daily rhythmicity in RCR, mtDNA/nDNA and plasma CORT under a normal LD cycle. However, these rhythms were significantly disrupted and clock genes expressions were dysregulated under chronic dim LL. Furthermore, mitochondrial abundance was significantly reduced during LL compared to their numbers under LD cycle. Our data demonstrate that the circadian clock regulates mitochondrial functions (RCR, number), essential for accomplishing daily energy demands and supply by the SCN neurons. Abnormal light exposure dysregulates mitochondrial functions in the SCN and may alter metabolism, resulting in obesity, diabetes, and other metabolic disorders. Therefore, properly designing lighting conditions in workplaces is essential to mitigate the adverse consequences of light on humans.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Humanos , Camundongos , Animais , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Mitocôndrias/genética , Respiração , DNA Mitocondrial/metabolismo , Fotoperíodo
15.
Mol Divers ; 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351693

RESUMO

In this paper, we developed a series of piperic acid (PA) analogs with the aim of overcoming the limitations associated with the natural products for the management of Alzheimer's disease (AD). A comprehensive SAR study was performed to enhance cholinesterase inhibition of PA. The acetylcholinesterase inhibition and its kinetic data suggested 6j as the lead molecule (AChE IC50 = 2.13 ± 0.015 µM, BChE = 28.19 ± 0.20%), in comparison to PA (AChE = 7.14 ± 0.98%) which was further selected for various biological studies in AD models. 6j, exhibited interaction with the peripheral anionic site of AChE, BBB permeability (Pe = 7.98), and antioxidant property (% radical scavenging activity = 35.41 ± 1.09, 2.43 ± 1.65, for 6j and PA at 20 M[Formula: see text], respectively). The result from the metal chelation study suggests that 6j did not effectively chelate iron. The molecular modeling studies suggested that 6j could effectively interact with Ser293, Phe295, Arg296, and Tyr34 of AChE. In the cell-based cytotoxicity studies, 6j exhibited cytocompatibility at the different tested concentrations. The acute toxicity data on mice suggested that compound 6j had no renal and hepatotoxicity at 500 mg/kg. Moreover, 6j could effectively reverse scopolamine-induced amnesia by improving spatial and cognitive memory in mice. The above results strongly suggest that compound 6j may act as a novel multi-targeted lead for AD therapy.

16.
Toxicology ; 492: 153542, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150287

RESUMO

Indole-3-carbinol (I3C) is reported to have hepatic and neuroprotective properties. However, the I3C role in the protection of the liver and brain in the pathological condition of hepatic encephalopathy has not been investigated. Therefore, in the present study, we have assessed the hepatic and neuroprotective roles of I3C against thioacetamide (TAA)- induced hepatic encephalopathy in Wistar rats. TAA (300 mg/kg) was intraperitoneally administered to Wistar rats to induce hepatic encephalopathy. The elevated levels of ammonia in the blood, liver, and brain were substantially lowered by I3C treatment (25, 50, and 100 mg/kg, oral, 7 days). I3C significantly ameliorated the TAA-induced liver dysfunction by decreasing the alanine transaminase, aspartate transaminase, and alkaline phosphatase enzymes and reduced the elevated cytochrome P4502E1 (CYP2E1) activity in the liver and brain. Further, I3C alleviated mitochondrial dysfunction and oxidative stress in the brain. I3C treatment improved the anti-inflammatory cytokine interleukin (IL)- 10 while reducing inflammatory cytokines such as tumor necrosis factor-1 and IL-6 in hepatic encephalopathy rats. I3C reduced the levels of apoptotic indicators mediated by the mitochondria, including cytochrome c, caspase 9, and caspase 3. Concurrently, I3C mitigated the liver and brain histological abnormalities in hepatic encephalopathy rats. Therefore, the present study concluded that the I3C protected the liver and brain from TAA-induced hepatic encephalopathy injury by inhibiting CYP2E1 enzyme activity and decreasing ammonia, oxidative stress, inflammation, and apoptosis. The present study provides preclinical validation of I3C use as hepatic and neuroprotective for hepatic encephalopathy management.


Assuntos
Encefalopatia Hepática , Ratos , Animais , Encefalopatia Hepática/induzido quimicamente , Encefalopatia Hepática/tratamento farmacológico , Encefalopatia Hepática/prevenção & controle , Tioacetamida/toxicidade , Ratos Wistar , Amônia/efeitos adversos , Amônia/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Citocinas/metabolismo
17.
ACS Chem Neurosci ; 14(11): 2217-2242, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216500

RESUMO

Our present work demonstrates the successful design and synthesis of a new class of compounds based upon a multitargeted directed ligand design approach to discover new agents for use in Alzheimer's disease (AD). All the compounds were tested for their in vitro inhibitory potential against human acetylcholinesterase (hAChE), human butylcholinesterase (hBChE), ß-secretase-1 (hBACE-1), and amyloid ß (Aß) aggregation. Compounds 5d and 5f have shown hAChE and hBACE-1 inhibition comparable to donepezil, while hBChE inhibition was comparable to rivastigmine. Compounds 5d and 5f also demonstrated a significant reduction in the formation of Aß aggregates through the thioflavin T assay and confocal, atomic force, and scanning electron microscopy studies and significantly displaced the total propidium iodide, that is, 54 and 51% at 50 µM concentrations, respectively. Compounds 5d and 5f were devoid of neurotoxic liabilities against RA/BDNF (RA = retinoic acid; BDNF = brain-derived neurotrophic factor)-differentiated SH-SY5Y neuroblastoma cell lines at 10-80 µM concentrations. In both the scopolamine- and Aß-induced mouse models for AD, compounds 5d and 5f demonstrated significant restoration of learning and memory behaviors. A series of ex vivo studies of hippocampal and cortex brain homogenates showed that 5d and 5f elicit decreases in AChE, malondialdehyde, and nitric oxide levels, an increase in glutathione level, and reduced levels of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) mRNA. The histopathological examination of mice revealed normal neuronal appearance in the hippocampal and cortex regions of the brain. Western blot analysis of the same tissue indicated a reduction in Aß, amyloid precursor protein (APP)/Aß, BACE-1, and tau protein levels, which were non-significant compared to the sham group. The immunohistochemical analysis also showed significantly lower expression of BACE-1 and Aß levels, which was comparable to donepezil-treated group. Compounds 5d and 5f represent new lead candidates for developing AD therapeutics.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Donepezila/farmacologia , Peptídeos beta-Amiloides/metabolismo , Ligantes , Fator Neurotrófico Derivado do Encéfalo , Piperazina , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Relação Estrutura-Atividade
18.
ACS Omega ; 8(10): 9394-9414, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936338

RESUMO

A series of some novel compounds (SD-1-17) were designed following a molecular hybridization approach, synthesized, and biologically tested for hAChE, hBChE, hBACE-1, and Aß aggregation inhibition potential to improve cognition and memory functions associated with Alzheimer's disease. Compounds SD-4 and SD-6 have shown multifunctional inhibitory profiles against hAChE, hBChE, and hBACE-1 enzymes in vitro. Compounds SD-4 and SD-6 have also shown anti-Aß aggregation potential in self- and acetylcholinesterase (AChE)-induced thioflavin T assay. Both compounds have shown a significant propidium iodide (PI) displacement from the cholinesterase-peripheral active site (ChE-PAS) region with excellent blood-brain barrier (BBB) permeability and devoid of neurotoxic liabilities. Compound SD-6 ameliorates cognition and memory functions in scopolamine- and Aß-induced behavioral rat models of Alzheimer's disease (AD). Ex vivo biochemical estimation revealed a significant decrease in malonaldehyde (MDA) and AChE levels, while a substantial increase of superoxide dismutase (SOD), catalase, glutathione (GSH), and ACh levels is seen in the hippocampal brain homogenates. The histopathological examination of brain slices also revealed no sign of neuronal or any tissue damage in the SD-6-treated experimental animals. The in silico molecular docking results of compounds SD-4 and SD-6 showed their binding with hChE-catalytic anionic site (CAS), PAS, and the catalytic dyad residues of the hBACE-1 enzymes. A 100 ns molecular dynamic simulation study of both compounds with ChE and hBACE-1 enzymes also confirmed the ligand-protein complex's stability, while quikprop analysis suggested drug-like properties of the compounds.

19.
Eur J Med Chem ; 249: 115145, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36706620

RESUMO

Vasicine is a pyrroloquinazoline alkaloid, which has been isolated from the plant Adhatoda vasica. Naturally inspired semi-synthetic transformations were prepared using vasicine as a synthetic precursor to overcome Alzheimer's disease (AD). These semi-synthetic analogs exhibited stable interactions and were well resided at AChE and BChE active sites in in-silico studies. Further, in-vitro experiments were performed to assess the cholinesterase inhibitory activity and reduction of amyloid-beta (Aß1-42) plaques potency, PAMPA assay permeability, and antioxidant activity, these findings suggested that compound VA10 can be a lead molecule among all the synthesized analogs. The compound VA10 binds towards AChE peripheral anionic site (PAS) property was established through propidium iodide displacement assay. Moreover, VA10 showed no notable cytotoxicity and exhibited neuroprotective nature on Aß1-42 treated SH-SY5Y cell line. In addition, VA10 was found to be safe in rats, which was confirmed by acute oral toxicity studies. Furthermore, in-vivo studies suggested that compound VA10 (10 mg/kg, p.o) ameliorated the memory and cognition impairment in scopolamine-induced amnesia model and Aß1-42 induced Alzheimer rat model. Ex-vivo studies of compound VA10 demonstrate improved ACh levels by inhibiting AChE activity in rat brain. Moreover, histopathological observations on rats brain sections indicate VA10 (10 mg/kg, p.o) recovered the neuronal cells at hippocampus region (DG, CA3, and CA1). These positive experimental data from in-silico, in-vitro and in-vivo studies, suggested that compound VA10 can be a lead compound for further preclinical development studies as a naturally derived alkaloid for anti-AD.


Assuntos
Alcaloides , Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Ratos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Relação Estrutura-Atividade , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Neuroblastoma/tratamento farmacológico , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/química
20.
Toxicology ; 485: 153409, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572170

RESUMO

The effects of ELF-PEMF exposure on spontaneous alternation, anxiety, motor coordination, and locomotor activity have been discussed in various pre-clinical and clinical settings. Several epidemiological and experimental studies have demonstrated the potential effects of ELF-PEMF when exposed > âˆ¼1 h/day; however, very few studies have focused on understanding the influence of ELF-PEMF exposure of 1-3 mT with an exposure duration of < 1 h/day on spontaneous alternation, anxiety, motor coordination, and locomotor activity. Hence, we attempted to study the effects of ELF-PEMF exposure of 1-3 mT, 50 Hz with an exposure duration of 20 min each with a 4 h gap (2 times) on the cellular proliferation and morphologies of C6 (Glial) cells and spontaneous alternation, anxiety, motor coordination and locomotor activity of Wistar rats under in vitro and in vivo conditions, respectively. The results showed that ELF-PEMF exposure did not induce any significant levels of cellular fragmentation and changes in the morphology of glial cells. Also, the outcomes revealed no noticeable effects on spontaneous alternation, anxiety, motor coordination, and locomotor activity in PEMF-exposed groups compared with the control. No undesirable side effects were observed at the highest dose (B=3 mT). We also performed histological analysis of the selected brain sections (hippocampus and cortex) following ELF-PEMF exposure. Incidentally, no significant changes were observed in cortical cell counts, tissue structure, and morphology.


Assuntos
Ansiedade , Neuroglia , Ratos , Animais , Ratos Wistar , Proliferação de Células , Ansiedade/induzido quimicamente , Locomoção , Campos Eletromagnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...