Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38607772

RESUMO

Background: Previous research has shown that noninvasive brain stimulation can be used to study how the central nervous system (CNS) prepares the execution of a motor task. However, these previous studies have been limited to a single muscle or single degree of freedom movements (e.g., wrist flexion). It is currently unclear if the findings of these studies generalize to multi-joint movements involving multiple muscles, which may be influenced by kinematic redundancy and muscle synergies. Objective: The objective of this study was to characterize corticospinal excitability during motor preparation in the cortex prior to functional upper extremity reaches. Methods: 20 participants without neurological impairments volunteered for this study. During the experiment, the participants reached for a cup in response to a visual "Go Cue". Prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in motor evoked potentials (MEPs) in several upper extremity muscles. We varied each participant's initial arm posture and used a novel synergy-based MEP analysis to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the Go Cue and movement onset to examine the time course of motor preparation. Results: We found that synergies with strong proximal muscle (shoulder and elbow) components emerged as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated. We also found that synergies varied with arm posture in a manner that reflected the muscle coordination of the reach. Conclusions: We believe that these findings provide useful insight into the way the CNS plans motor skills.

2.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38633786

RESUMO

Background: The ability to relearn a lost skill is critical to motor recovery after a stroke. Previous studies indicate that stroke typically affects the processes underlying motor control and execution but not the learning of those skills. However, these prior studies could have been confounded by the presence of significant motor impairments and/or have not focused on motor acuity tasks (i.e., tasks focusing on the quality of executed actions) that have direct functional relevance to rehabilitation. Methods: Twenty-five participants (10 stroke; 15 controls) were recruited for this prospective, case-control study. Participants learned a novel foot-trajectory tracking task on two consecutive days while walking on a treadmill. On day 1, participants learned a new gait pattern by performing a task that necessitated greater hip and knee flexion during the swing phase of the gait. On day 2, participants repeated the task with their training leg to test retention. An average tracking error was computed to determine online and offline learning and was compared between stroke survivors and uninjured controls. Results: Stroke survivors were able to improve their tracking performance on the first day (p=0.033); however, the amount of learning in stroke survivors was lower in comparison with the control group on both days (p≤0.05). Interestingly, the offline gains in motor learning were higher in stroke survivors when compared with uninjured controls (p=0.011). Conclusions: The results suggest that even high-functioning stroke survivors may have difficulty acquiring new motor skills related to walking, which may be related to the underlying neural damage caused at the time of stroke. Furthermore, it is likely that stroke survivors may require longer training with adequate rest to acquire new motor skills, and rehabilitation programs should target motor skill learning to improve outcomes after stroke.

3.
J Neuroeng Rehabil ; 21(1): 62, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658969

RESUMO

BACKGROUND: Stroke remains a major cause of long-term adult disability in the United States, necessitating the need for effective rehabilitation strategies for post-stroke gait impairments. Despite advancements in post-stroke care, existing rehabilitation often falls short, prompting the development of devices like robots and exoskeletons. However, these technologies often lack crucial input from end-users, such as clinicians, patients, and caregivers, hindering their clinical utility. Employing a human-centered design approach can enhance the design process and address user-specific needs. OBJECTIVE: To establish a proof-of-concept of the human-centered design approach by refining the NewGait® exosuit device for post-stroke gait rehabilitation. METHODS: Using iterative design sprints, the research focused on understanding the perspectives of clinicians, stroke survivors, and caregivers. Two design sprints were conducted, including empathy interviews at the beginning of the design sprint to integrate end-users' insights. After each design sprint, the NewGait device underwent refinements based on emerging issues and recommendations. The final prototype underwent mechanical testing for durability, biomechanical simulation testing for clinical feasibility, and a system usability evaluation, where the new stroke-specific NewGait device was compared with the original NewGait device and a commercial product, Theratogs®. RESULTS: Affinity mapping from the design sprints identified crucial categories for stakeholder adoption, including fit for females, ease of donning and doffing, and usability during barefoot walking. To address these issues, a system redesign was implemented within weeks, incorporating features like a loop-backed neoprene, a novel closure mechanism for the shoulder harness, and a hook-and-loop design for the waist belt. Additional improvements included reconstructing anchors with rigid hook materials and replacing latex elastic bands with non-latex silicone-based bands for enhanced durability. Further, changes to the dorsiflexion anchor were made to allow for barefoot walking. Mechanical testing revealed a remarkable 10-fold increase in durability, enduring 500,000 cycles without notable degradation. Biomechanical simulation established the modularity of the NewGait device and indicated that it could be configured to assist or resist different muscles during walking. Usability testing indicated superior performance of the stroke-specific NewGait device, scoring 84.3 on the system usability scale compared to 62.7 for the original NewGait device and 46.9 for Theratogs. CONCLUSION: This study successfully establishes the proof-of-concept for a human-centered design approach using design sprints to rapidly develop a stroke-specific gait rehabilitation system. Future research should focus on evaluating the clinical efficacy and effectiveness of the NewGait device for post-stroke rehabilitation.


Assuntos
Desenho de Equipamento , Exoesqueleto Energizado , Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Design Centrado no Usuário , Feminino , Fenômenos Biomecânicos , Masculino , Pessoa de Meia-Idade , Robótica/instrumentação , Cuidadores
4.
Gait Posture ; 108: 56-62, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988887

RESUMO

BACKGROUND: Ankle joint stiffness and viscosity are fundamental mechanical descriptions that govern the movement of the body and impact an individual's walking ability. Hence, these internal properties of a joint have been increasingly used to evaluate the effects of pathology (e.g., stroke) and in the design and control of robotic and prosthetic devices. However, the reliability of these measurements is currently unclear, which is important for translation to clinical use. RESEARCH QUESTION: Can we reliably measure the mechanical impedance parameters of the ankle while standing and walking? METHODS: Eighteen able-bodied individuals volunteered to be tested on two different days separated by at least 24 h. Participants received several small random ankle dorsiflexion perturbations while standing and during the stance phase of walking using a custom-designed robotic platform. Three-dimensional motion capture cameras and a 6-component force plate were used to quantify ankle joint motions and torque responses during normal and perturbed conditions. Ankle mechanical impedance was quantified by computing participant-specific ensemble averages of changes in ankle angle and torque due to perturbation and fitting a second-order parametric model consisting of stiffness, viscosity, and inertia. The test-retest reliability of each parameter was assessed using intraclass correlation coefficients (ICCs). We also computed the minimal detectable change (MDC) for each impedance parameter to establish the smallest amount of change that falls outside the measurement error of the instrument. RESULTS: In standing, the reliability of stiffness, viscosity, and inertia was good to excellent (ICCs=0.67-0.91). During walking, the reliability of stiffness and viscosity was good to excellent (ICCs=0.74-0.84) while that of inertia was fair to good (ICCs=0.47-0.68). The MDC for a single subject ranged from 20%- 65% of the measurement mean but was higher (>100%) for inertia during walking. SIGNIFICANCE: Results indicate that dynamic measures of ankle joint impedance were generally reliable and could serve as an adjunct clinical tool for evaluating gait impairments.


Assuntos
Articulação do Tornozelo , Caminhada , Humanos , Articulação do Tornozelo/fisiologia , Reprodutibilidade dos Testes , Caminhada/fisiologia , Tornozelo , Posição Ortostática , Fenômenos Biomecânicos
5.
IEEE Trans Haptics ; PP2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938965

RESUMO

Semi-passive rehabilitation robots resist and steer a patient's motion using only controllable passive force elements (e.g., controllable brakes). Contrarily, passive robots use uncontrollable passive force elements (e.g., springs), while active robots use controllable active force elements (e.g., motors). Semi-passive robots can address cost and safety limitations of active robots, but it is unclear if they have utility in rehabilitation. Here, we assessed if a semi-passive robot could provide haptic guidance to facilitate motor learning. We first performed a theoretical analysis of the robot's ability to provide haptic guidance, and then used a prototype to perform a motor learning experiment that tested if the guidance helped participants learn to trace a shape. Unlike prior studies, we minimized the confounding effects of visual feedback during motor learning. Our theoretical analysis showed that our robot produced guidance forces that were, on average, 54° from the current velocity (active devices achieve 90). Our motor learning experiment showed, for the first time, that participants who received haptic guidance during training learned to trace the shape more accurately (97.57% error to 52.69%) than those who did not receive guidance (81.83% to 78.18%). These results support the utility of semi-passive robots in rehabilitation.

6.
Clin Biomech (Bristol, Avon) ; 108: 106059, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37562332

RESUMO

BACKGROUND: Walking biomechanics are commonly affected after anterior cruciate ligament reconstruction and differ compared to uninjured controls. Manipulating task difficulty has been shown to affect the magnitude of walking impairments in those early after knee surgery but it is unclear if patients in later phases post-op are similarly affected by differing task demands. Here, we evaluated the effects of manipulating walking speed on between-limb differences in ground reaction force and knee biomechanics in those with and without anterior cruciate ligament reconstruction. METHODS: We recruited 28 individuals with anterior cruciate ligament reconstruction and 20 uninjured control participants to undergo walking assessments at three speeds (self-selected, 120%, and 80% self-selected speed). Main outcomes included sagittal plane knee moments, angles, excursions, and ground reaction forces (vertical and anterior-posterior). FINDINGS: We observed walking speed differentially impacted force and knee-outcomes in those with anterior cruciate ligament reconstruction. Between-limb differences increased at fast and decreased at slow speeds in those with anterior cruciate ligament reconstruction while uninjured participants maintained between-limb differences regardless of speed (partial η2 = 0.13-0.33, p < 0.05). Anterior cruciate ligament reconstruction patients underloaded the surgical limb relative to both the contralateral, and uninjured controls in GRFs and sagittal plane knee moments (partial η2 range = 0.13-0.25, p < 0.05). INTERPRETATION: Overall, our findings highlight the persistence of walking impairments in those with anterior cruciate ligament reconstruction despite completing formal rehabilitation. Further research should consider determining if those displaying larger changes in gait asymmetries in response to fast walking also exhibit poorer strength and/or joint health outcomes.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Velocidade de Caminhada , Fenômenos Biomecânicos , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Joelho/cirurgia
7.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292868

RESUMO

The central nervous system (CNS) moves the human body by forming a plan in the primary motor cortex and then executing this plan by activating the relevant muscles. It is possible to study motor planning by using noninvasive brain stimulation techniques to stimulate the motor cortex prior to a movement and examine the evoked responses. Studying the motor planning process can reveal useful information about the CNS, but previous studies have generally been limited to single degree of freedom movements ( e.g., wrist flexion). It is currently unclear if findings in these studies generalize to multi-joint movements, which may be influenced by kinematic redundancy and muscle synergies. Here, our objective was to characterize motor planning in the cortex prior to a functional reach involving the upper extremity. We asked participants to reach for a cup placed in front of them when presented with a visual "Go Cue". Following the go cue, but prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in the magnitudes of evoked responses in several upper extremity muscles (MEPs). We varied each participant's initial arm posture to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the go cue and movement onset to examine the time course of changes in the MEPs. We found that the MEPs in all proximal (shoulder and elbow) muscles increased as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated or even inhibited. We also found that facilitation varied with arm posture in a manner that reflected the coordination of the subsequent reach. We believe that these findings provide useful insight into the way the CNS plans motor skills.

8.
Comput Biol Med ; 154: 106627, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753980

RESUMO

BACKGROUND: Motor learning experiments are typically performed in laboratory environments, which can be time-consuming and require dedicated equipment/personnel, thus limiting the ability to gather data from large samples. To address this problem, some researchers have transitioned to unsupervised online experiments, showing advantages in participant recruitment without losing validity. However, most online platforms require coding experience or time-consuming setups to create and run experiments, limiting their usage across the field. METHOD: To tackle this issue, an open-source web-based platform was developed (https://experiments.neurro-lab.engin.umich.edu/) to create, run, and manage procedural skill learning experiments without coding or setup requirements. The feasibility of the platform and the comparability of the results between supervised (n = 17) and unsupervised (n = 24) were tested in 41 naive right-handed participants using an established sequential finger tapping task. The study also tested if a previously reported rapid form of offline consolidation (i.e., microscale learning) in procedural skill learning could be replicated with the developed platform and evaluated the extent of interlimb transfer associated with the finger tapping task. RESULTS: The results indicated that the performance metrics were comparable between the supervised and unsupervised groups (all p's > 0.05). The learning curves, mean tapping speeds, and micro-scale learning were similar to previous studies. Training led to significant improvements in mean tapping speed (2.22 ± 1.48 keypresses/s, p < 0.001) and a significant interlimb transfer of learning (1.22 ± 1.43 keypresses/s, p < 0.05). CONCLUSIONS: The results show that the presented platform may serve as a valuable tool for conducting online procedural skill-learning experiments.


Assuntos
Destreza Motora , Desempenho Psicomotor , Humanos , Aprendizagem , Mãos
9.
IEEE Trans Biomed Eng ; 70(4): 1274-1285, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36240034

RESUMO

OBJECTIVE: Functional resistance training (FRT) during walking is an emerging approach for rehabilitating individuals with neuromuscular or orthopedic injuries. During FRT, wearable exoskeleton/braces can target resistance to a weakened leg joint; however, the resistive properties of the training depend on the type of resistive elements used in the device. Hence, this study was designed to examine how the biomechanical and neural effects of functional resistance training differ with viscous and elastic resistances during both treadmill and overground walking. METHODS: Fourteen able-bodied individuals were trained on two separate sessions with two devices that provided resistance to the knee (viscous and elastic) while walking on a treadmill. We measured gait biomechanics and muscle activation during training, as well as kinematic aftereffects and changes in peripheral fatigue and neural excitability after training. RESULTS: We found the resistance type differentially altered gait kinetics during training-elastic resistance increased knee extension during stance while viscous resistance primarily affected swing. Also, viscous resistance increased power generation while elastic resistance could increase power absorption. Both devices resulted in significant kinematic and neural aftereffects. However, overground kinematic aftereffects and neural excitability did not differ between devices. CONCLUSION: Different resistance types can be used to alter gait biomechanics during training. While there were no resistance-specific changes in acute neural adaptation following training, it is still possible that prolonged and repeated training could produce differential effects. SIGNIFICANCE: Resistance type alters the kinetics of functional resistance training. Prolonged and repeated training sessions on patients will be needed to further measure the effects of these devices.


Assuntos
Treinamento Resistido , Humanos , Caminhada/fisiologia , Articulação do Joelho/fisiologia , Marcha/fisiologia , Músculo Esquelético/fisiologia
10.
J Biomech ; 146: 111400, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469997

RESUMO

Individuals with anterior cruciate ligament (ACL) reconstruction often display abnormal gait mechanics reflective of a "stiff-knee" gait (i.e., reduced knee flexion angles and moments). However, dynamic knee stiffness, which is the dynamic relationship between the position of the knee and the moment acting on it, has not been directly examined during walking in individuals with ACL reconstruction. Here, we aimed to evaluate dynamic knee stiffness in the involved compared to the uninvolved limb during weight-acceptance and mid-stance phases of walking. Twenty-six individuals who underwent ACL reconstruction (Age: 20.2 ± 5.1 yrs., Time post-op: 7.2 ± 0.9 mo.) completed an overground walking assessment using a three-dimensional motion capture system and two force plates. Dynamic knee stiffness (Nm/°) was calculated as the slope of the regression line during weight-acceptance and midstance, obtained by plotting the sagittal plane knee angle versus knee moment. Paired t-tests with Bonferroni corrections were used to compare differences in dynamic stiffness, knee excursions, and moment ranges between limbs during both stance phases. Greater dynamic knee stiffness was found in the involved compared with the uninvolved limb during weight-acceptance and mid-stance (p < 0.01). Knee flexion and extension excursions were reduced in the involved limb during both weight-acceptance and mid-stance, respectively (p < 0.01). Sagittal plane knee moment ranges were not different between limbs during weight-acceptance (p = 0.1); however, the involved limb moment range was reduced relative to the uninvolved limb during mid-stance (p < 0.01). These results indicate that individuals with ACL reconstruction walk with a stiffer knee throughout stance, which may influence knee contact forces and could contribute to the high propensity for post-traumatic knee osteoarthritis development in this population.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Osteoartrite , Humanos , Adolescente , Adulto Jovem , Adulto , Lesões do Ligamento Cruzado Anterior/cirurgia , Caminhada , Articulação do Joelho/cirurgia , Marcha , Osteoartrite/cirurgia , Fenômenos Biomecânicos
11.
Sports Health ; 15(3): 372-381, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35766451

RESUMO

BACKGROUND: Quadriceps weakness is common after anterior cruciate ligament (ACL) reconstruction and can alter gait mechanics. Functional resistance training (FRT) is a novel approach to retraining strength after injury, but it is unclear how it alters gait mechanics. Therefore, we tested how 3 different types of FRT devices: a knee brace resisting extension (unidirectional brace), a knee brace resisting extension and flexion (bidirectional brace), and an elastic band pulling backwards on the ankle (elastic band)-acutely alter gait kinetics in this population. HYPOTHESIS: The type of FRT device will affect ground-reaction forces (GRFs) during and after the training. Specifically, the uni- and bidirectional braces will increase GRFs when compared with the elastic band. STUDY DESIGN: Crossover study. LEVEL OF EVIDENCE: Level 2. METHODS: A total of 15 individuals with ACL reconstruction received FRT with each device over 3 separate randomized sessions. During training, participants walked on a treadmill while performing a tracking task with visual feedback. Sessions contained 5 training trials (180 seconds each) with rest between. Vertical and anterior-posterior GRFs were assessed on the ACL-reconstructed leg before, during, and after training. Changes in GRFs were compared across devices using 1-dimensional statistical parametric mapping. RESULTS: Resistance applied via bidirectional brace acutely increased gait kinetics during terminal stance/pre-swing (ie, push-off), while resistance applied via elastic band acutely increased gait kinetics during initial contact/loading (ie, braking). Both braces behaved similarly, but the unidirectional brace was less effective for increasing push-off GRFs. CONCLUSION: FRT after ACL reconstruction can acutely alter gait kinetics during training. Devices can be applied to selectively alter gait kinetics. However, the long-term effects of FRT after ACL reconstruction with these devices are still unknown. CLINICAL RELEVANCE: FRT may be applied to alter gait kinetics of the involved limb after ACL reconstruction, depending on the device used.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Treinamento Resistido , Humanos , Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Estudos Cross-Over , Marcha , Cinética , Articulação do Joelho , Projetos Piloto
12.
Restor Neurol Neurosci ; 41(5-6): 193-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38306067

RESUMO

Background: Interventions to recover upper extremity (UE) function after moderate-to-severe stroke are limited. Transcranial random noise stimulation (tRNS) is an emerging non-invasive technique to improve neuronal plasticity and may potentially augment functional outcomes when combined with existing interventions, such as functional electrical stimulation (FES). Objective: The objective of this study was to investigate the feasibility and preliminary efficacy of combined tRNS and FES-facilitated task practice to improve UE impairment and function after moderate-to-severe stroke. Methods: Fourteen individuals with UE weakness were randomized into one of two groups: 1) tRNS with FES-facilitated task practice, or 2) sham-tRNS with FES-facilitated task practice. Both groups involved 18 intervention sessions (3 per week for 6 weeks). tRNS was delivered at 2 mA current between 100-500 Hz for the first 30 minutes of FES-facilitated task practice. We evaluated the number of sessions completed, adverse effects, participant satisfaction, and intervention fidelity between the two therapists. UE impairment (Fugl-Meyer Upper Extremity, FMUE), function (Wolf Motor Function Test, WMFT), participation (Stroke Impact Scale hand score, SIS-H), and grip strength were assessed at baseline, within 1 week and 3 months after completing the intervention. Results: All participants completed the 18 intervention sessions. Participants reported minimal adverse effects (mild tingling in head). The two trained therapists demonstrated 93% adherence and 96% competency with the intervention protocol. FMUE and SIS-H improved significantly more in the tRNS group than in the sham-tRNS group at both timepoints (p≤0.05), and the differences observed exceeded the clinically meaningful differences for these scores. The WMFT and paretic hand grip strength improved in both groups after the intervention (p≤0.05), with no significant between group differences. Conclusion: Our findings show for the first time that combining tRNS and FES-facilitated task practice is a feasible and promising approach to improve UE impairment and function after moderate-to-severe stroke.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Força da Mão , Projetos Piloto , Reabilitação do Acidente Vascular Cerebral/métodos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/terapia , Extremidade Superior
13.
Meas Phys Educ Exerc Sci ; 26(3): 199-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060895

RESUMO

Electrically evoked torque at rest (i.e., the torque produced from supramaximal stimul applied to a resting muscle) has been shown to be related to muscle size in healthy adults, but this relationship has not been evaluated in pathological populations where atrophy is present. This study aimed to evaluate the relationship between the electrically evoked torque at rest and vastus lateralis cross-sectional area (CSA) in individuals with anterior cruciate ligament (ACL) reconstruction. Eighteen individuals with ACL reconstruction participated. Quadriceps electrically evoked torque at rest was elicited bilaterally via sex-specific, standardized supramaximal triplet stimulations. Vastus lateralis CSA was measured at 50% of thigh length using ultrasound. Pearson's r and partial correlations were used to evaluate associations between outcomes. Evoked torque at rest was positively associated with vastus lateralis CSA in the ACL reconstructed limb (r=0.865, partial r=0.816, P<0.01), non-reconstructed limb (r=0.628, partial r=0.575, P<0.05), and side-to-side ratios (r=0.670, partial r=0.659, P<0.01). These results indicate that electrically evoked torque at rest may indirectly assess side-to-side differences in quadriceps muscle size after ACL reconstruction.

14.
J Electromyogr Kinesiol ; 67: 102700, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36063566

RESUMO

This study comprehensively evaluated the test-retest reliability of raw and normalized quadriceps motor evoked responses elicited by transcranial magnetic stimulation (TMS) in individuals with anterior cruciate ligament (ACL) reconstruction. Fifteen participants were tested on three different days that were separated at least by 24 h. Motor evoked responses were collected during a small background contraction on the reconstructed leg across a range of TMS intensities using torque (MEPTORQUE) and electromyographic (MEPEMG) responses. MEPTORQUE and MEPEMG were evaluated using different normalization procedures (raw, normalized to maximum voluntary isometric contraction [MVIC], peak MEP, and background contraction). MEPTORQUE was also normalized to the magnetically-evoked peripheral resting twitch torque. The area under the recruitment curve was computed for both raw and normalized MEPs. Intraclass correlation coefficients (ICCs) were determined to assess test-retest reliability. Results indicated that MEPTORQUE generally showed greater reliability than MEPEMG for all normalization procedures. Vastus medialis MEPEMG generally showed greater reliability than rectus femoris MEPEMG. Finally, both MEPTORQUE and MEPEMG exhibited good reliability, even when not normalized. These findings indicate that MEPTORQUE and MEPEMG offer reliable measures of corticospinal function and suggest that MEPTORQUE is a suitable alternative to MEPEMG for measuring quadriceps corticospinal excitability in individuals with ACL reconstruction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Reprodutibilidade dos Testes , Músculo Esquelético , Músculo Quadríceps/fisiologia , Torque , Potencial Evocado Motor/fisiologia
15.
Med Sci Sports Exerc ; 54(12): 2208-2215, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35941516

RESUMO

PURPOSE: This study aimed to comprehensively examine the extent to which knee flexion angle at initial contact, peak knee flexion angle, and vertical ground reaction force (vGRF) contribute to knee extension moments during gait in individuals with anterior cruciate ligament (ACL) reconstruction. METHODS: Overground gait biomechanics were evaluated in 26 participants with ACL reconstruction at three time points (about 2, 4, and 6 months after the surgery). Knee flexion angle at initial contact, peak knee flexion angle, peak vGRF, and peak knee extension moment were calculated for each limb during the early stance phase of gait for all three time points. A change score from baseline (time point 2 - time point 1 and time point 3 - time point 1) along with limb symmetry values (ACL - non-ACL limb values) was also calculated for these variables. Multiple linear regressions utilizing classical and Bayesian interference methods were used to determine the contribution of knee flexion angle and vGRF to knee extension moment during gait. RESULTS: Peak knee flexion angle and peak vGRF positively contributed to knee extension moment during gait in both the reconstructed ( R2 = 0.767, P < 0.001) and nonreconstructed limbs ( R2 = 0.815, P < 0.001). Similar results were observed for the symmetry values ( R2 = 0.673, P < 0.001) and change scores ( R2 = 0.731-0.883; all P < 0.001), except that the changes in knee flexion angle at initial contact also contributed to the model using the change scores in the nonreconstructed limb (time point 2 - time point 1: R2 = 0.844, P < 0.001; time point 3 - time point 1: R2 = 0.883, P < 0.001). Bayesian regression evaluating the likelihood of these prediction models showed that there was decisive evidence favoring the alternative model over the null model (all Bayes factors >1000). Standardized ß coefficients indicated that changes in knee flexion angle had a greater impact (>2×) on knee extension moments than vGRF at both time points in both limbs ( ßvGRF = 0.204-0.309; ßkneeflexion = 0.703-0.831). CONCLUSIONS: The findings indicate that both knee flexion angle and peak vGRF positively contribute to altered knee extension moments during gait, but the contribution of knee flexion angle is much greater than vGRF. Therefore, treatment strategies targeting these variables may improve knee loading after ACL reconstruction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Teorema de Bayes , Lesões do Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho/cirurgia , Marcha , Fenômenos Biomecânicos
16.
Gait Posture ; 97: 188-195, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35988434

RESUMO

BACKGROUND: Open-source pose estimation is rapidly reducing the costs associated with motion capture, as machine learning partially eliminates the need for specialized cameras and equipment. This technology could be particularly valuable for clinical gait analysis, which is often performed qualitatively due to the prohibitive cost and setup required for conventional, marker-based motion capture. RESEARCH QUESTION: How do open-source pose estimation software packages compare in their ability to measure kinematics and spatiotemporal gait parameters for gait analysis? METHODS: This analysis used an existing dataset that contained video and synchronous motion capture data from 32 able-bodied participants while walking. Sagittal plane videos were analyzed using pre-trained algorithms from four open-source pose estimation methods-OpenPose, Tensorflow MoveNet Lightning, Tensorflow MoveNet Thunder, and DeepLabCut-to extract keypoints (i.e., landmarks) and calculate hip and knee kinematics and spatiotemporal gait parameters. The absolute error when using each markerless pose estimation method was computed against conventional marker-based optical motion capture. Errors were compared between pose estimation methods using statistical parametric mapping. RESULTS: Pose estimation methods differed in their ability to measure kinematics. OpenPose and Tensorflow MoveNet Thunder methods were most accurate for measuring hip kinematics, averaging 3.7 ± 1.3 deg and 4.6 ± 1.8 deg (mean ± std) over the entire gait cycle, respectively. OpenPose was most accurate when measuring knee kinematics, averaging 5.1 ± 2.5 deg of error over the gait cycle. MoveNet Thunder and OpenPose had the lowest errors when measuring spatiotemporal gait parameters but were not statistically different from one another. SIGNIFICANCE: The results indicate that OpenPose significantly outperforms other existing platforms for pose-estimation of healthy gait kinematics and spatiotemporal gait parameters and could serve as an alternative to conventional motion capture systems in clinical and research settings when marker-based systems are not available.


Assuntos
Marcha , Caminhada , Fenômenos Biomecânicos , Análise da Marcha , Humanos , Articulação do Joelho
17.
Braz J Mot Behav ; 16(2): 112-133, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36032270

RESUMO

Motor learning is a central focus of several disciplines including kinesiology, neuroscience and rehabilitation. However, given the different traditions of these fields, this interdisciplinarity can be a challenge when trying to interpret evidence and claims from motor learning experiments. To address this issue, we offer a set of ten guidelines for designing motor learning experiments starting from task selection to data analysis, primarily from the viewpoint of running lab-based experiments. The guidelines are not intended to serve as rigid rules, but instead to raise awareness about key issues in motor learning. We believe that addressing these issues can increase the robustness of work in the field and its relevance to the real-world.

18.
Arthroscopy ; 38(11): 3043-3055, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690253

RESUMO

PURPOSE: The purpose of this study was to determine 1) whether progressive functional resistance training (FRT) during walking would improve knee biomechanical symmetry after anterior cruciate ligament (ACL) reconstruction and 2) whether the mode of delivery of FRT would have a differential effect on symmetry. METHODS: Thirty individuals who underwent primary ACL reconstruction at a single institution volunteered for this study. Participants were randomized into one of three groups: 1) BRACE, 2) BAND, or 3) CONTROL. The BRACE group received FRT with a novel robotic knee brace along with real-time kinematic feedback. The BAND group received FRT with a custom resistance band device along with real-time kinematic feedback. The CONTROL group received only real-time kinematic feedback. Participants in all groups received training (2-3/week for 8 weeks) while walking on a treadmill. Knee angle and moment symmetry were calculated immediately prior to beginning the intervention and within 1 week of completing the intervention. Statistical Parametric Mapping was used to assess differences in biomechanical symmetry between groups across time. RESULTS: There was a significant interaction in knee moment symmetry from 21 and 24% of the stance phase (P = .046), in which the BAND group had greater improvements following training compared with both BRACE (P = .043) and CONTROL groups (P = .002). There was also a significant time effect in knee angle symmetry from 68 to 79% of the stance phase (P = .028) and from 97 to 100% of the swing phase (P = .050) in which only the BRACE group showed significant improvements after the intervention (stance: P = .020 and swing: P < .001). CONCLUSION: The results of this randomized controlled clinical trial indicate that 8 weeks of progressive FRT during treadmill walking in individuals with ACL reconstruction improves knee angle and moment symmetry during gait. The findings suggest that FRT could serve as a potential therapeutic adjuvant to traditional rehabilitation after ACL reconstruction and can help restore knee joint biomechanical symmetry. LEVEL OF EVIDENCE: Level II, randomized controlled trial.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Treinamento Resistido , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Articulação do Joelho/cirurgia , Marcha , Fenômenos Biomecânicos
19.
Med Sci Sports Exerc ; 54(10): 1729-1737, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551165

RESUMO

PURPOSE: Quadriceps weakness is common after anterior cruciate ligament (ACL) reconstruction, resulting in prolonged disability and increased risk for reinjury and osteoarthritis. Functional resistance training (FRT) combines resistance training with task-specific training and may prove beneficial in restoring quadriceps strength. The primary purpose of this study was to determine if a walking-specific FRT program (e.g., resisted walking) improves knee strength in individuals after ACL reconstruction. METHODS: Thirty participants were randomized into one of three groups: 1) FRT with a customized knee BRACE applied to the ACL leg, 2) FRT with elastic BAND tethered to the ankle of the ACL leg, or 3) a TARGET MATCH condition where no resistance was externally applied. Participants in all groups received training while walking on a treadmill 2-3 times per week for 8 wk. Isometric knee extension and flexion strength were measured before the start of the intervention, after the intervention (POST), and 8 wk after intervention completion (POST-2). RESULTS: The BRACE group had greater knee extensor strength compared with the TARGET MATCH group at POST and POST-2 ( P < 0.05). The BRACE group had greater knee flexor strength than the TARGET MATCH group at POST and POST-2 ( P < 0.05) and the BAND group at POST ( P < 0.05). CONCLUSIONS: FRT applied via a customized knee brace results in improvements in knee extensor and flexor strength after ACL reconstruction. FRT is a beneficial adjuvant to ACL rehabilitation and leads to better strength compared with standard of care.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Treinamento Resistido , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/reabilitação , Humanos , Articulação do Joelho/fisiologia , Força Muscular/fisiologia , Músculo Quadríceps/fisiologia , Treinamento Resistido/métodos , Coxa da Perna
20.
Restor Neurol Neurosci ; 40(2): 97-107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527584

RESUMO

BACKGROUND: Despite tremendous advances in the treatment and management of stroke, restoring motor and functional outcomes after stroke continues to be a major clinical challenge. Given the wide range of approaches used in motor rehabilitation, several commentaries have highlighted the lack of a clear scientific basis for different interventions as one critical factor that has led to suboptimal study outcomes. OBJECTIVE: To understand the content of current therapeutic interventions in terms of their active ingredients. METHODS: We conducted an analysis of randomized controlled trials in stroke rehabilitation over a 2-year period from 2019-2020. RESULTS: There were three primary findings: (i) consistent with prior reports, most studies did not provide an explicit rationale for why the treatment would be expected to work, (ii) most therapeutic interventions mentioned multiple active ingredients and there was not a close correspondence between the active ingredients mentioned versus the active ingredients measured in the study, and (iii) multimodal approaches that involved more than one therapeutic approach tended to be combined in an ad-hoc fashion, indicating the lack of a targeted approach. CONCLUSION: These results highlight the need for strengthening cross-disciplinary connections between basic science and clinical studies, and the need for structured development and testing of therapeutic approaches to find more effective treatment interventions.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Atividades Cotidianas , Humanos , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...