Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 192: 115061, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37187001

RESUMO

Per- and polyfluorinated chemicals (PFASs) are very toxic industrial compounds, and fewer studies have been conducted on their presence in the sedimentary environment of the polar region. The present study is a preliminary assessment of the concentration and distribution of PFOA (Perfluorooctanoic acid) in selected fjord systems of the Svalbard archipelago, Norwegian Arctic. The ∑PFOA observed for Smeerenburgfjorden, Krossfjorden, Kongsfjorden Hotmiltonbuktafjorden, Raudfjorden and Magdalenefjorden were 1.28 ng/g, 0.14 ng/g, 0.68 ng/g, 6.54 ng/g, 0.41 ng/g and BDL respectively. Of the twenty-three fjord samples studied, the sediments from Hotmiltonbuktafjorden exhibited the presence of a higher concentration of PFOA in the sediment matrices. More studies are needed to understand their fate in the sedimentary environment with respect to the physio-chemical properties of the sediments.


Assuntos
Estuários , Fluorocarbonos , Svalbard , Sedimentos Geológicos/química
2.
Braz J Microbiol ; 54(3): 1645-1654, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37036659

RESUMO

Microbial L-asparaginase is well known for its application in food industries to reduce acrylamide content in fried starchy food. L-asparaginase produced by Arctic actinomycetes Streptomyces koyangensis SK4 was purified and studied for biochemical characterization. The L-asparaginase was purified with a yield of 15.49% and final specific activity of 179.77 IU/mg of protein. The enzyme exhibited a molecular weight of 43 kDa. The optimum pH and temperature for maximum activity of the purified enzyme were 8.5 °C and 40 °C, respectively. The enzyme expressed maximum activity at an incubation period of 30 min and a substrate concentration of 0.06 M. The enzyme has a low Km value of 0.041 M and excellent substrate specificity toward L-asparagine. The enzyme activity was inhibited by metal ions Ba2+ and Hg2+, while Mn2+ and Mg2+ enhanced the activity. The study evaluated the acrylamide reduction potential of L-asparaginase from Streptomyces koyangensis SK4 in potato chips. The blanching plus L-asparaginase treatment of potato slices resulted in a 50% reduction in acrylamide content. The study illustrated an effective acrylamide reduction strategy in potato chips using L-asparaginase from a psychrophilic actinomycete. Besides the acrylamide reduction potential, L-asparaginase from Streptomyces koyangensis SK4 also did not exhibit any glutaminase or urease activity which is an outstanding feature of L-asparaginase to be used as a chemotherapeutic agent.


Assuntos
Asparaginase , Streptomyces , Asparaginase/genética , Asparaginase/metabolismo , Acrilamida/química , Acrilamida/metabolismo , Streptomyces/metabolismo , Temperatura
3.
Artigo em Inglês | MEDLINE | ID: mdl-35583433

RESUMO

A Gram-stain-negative, rod-shaped bacterial strain designated as 20VBR1T was isolated from a valley glacier (Vestrebroggerbreen) snout ice sample from Ny-Ålesund, Svalbard, Arctic. The colonies were smooth, circular and light creamish on half-strength R2A agar and grew at 10-35 °C (optimum, 20 °C), at pH 6.5-8.0 (optimum, 7.0) and with 0-2.5 % (w/v) NaCl (optimum, 0.5 %). 16S rRNA gene sequence analysis revealed that strain 20VBR1T belonged to the genus Phenylobacterium and was most closely affiliated to Phenylobacterium aquaticum W2-3-4T (97.65 % similarity), Phenylobacterium haematophilum LMG 11050T (97.57 %) and Phenylobacterium koreense Slu-01T (96.91 %). 20VBR1T has a genome size of 4.24 Mb, comprising 4185 predicted genes with a DNA G+C content of 67.86 mol%. DNA-DNA hybridization experiments indicated that the DNA-DNA relatedness between strain 20VBR1T and P. aquaticum KACC 18306T was 41.95±4.36 %, well below the threshold (<70 %) to delineate bacterial species. Genome relatedness indexes revealed that the average nucleotide identity and digital DNA-DNA hybridization values between 20VBR1T and its closest phylogenomic relative, P. aquaticum KACC 18306T, were 78.97 and 22.10 %, respectively. The predominant isoprenoid quinone was ubiquinone (Q-10) and the major polar lipids were phosphatidylglycerol, one unknown phospholipid, one unknown glycolipid and four unidentified polar lipids. The major fatty acids (>10 %) of strain 20VBR1T were summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c) and C16 : 0. Based on the physiological, biochemical, chemotaxonomic, phylogenetic and phylogenomic analyses, isolate 20VBR1T is considered to represent a novel species of the genus Phenylobacterium, for which the name Phenylobacterium glaciei sp. nov. is proposed. The type strain is 20VBR1T (=JCM 33227 T=DSM 111428 T=MCC 4220 T).


Assuntos
Ácidos Graxos , Camada de Gelo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Svalbard
4.
Mar Pollut Bull ; 174: 113277, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34995883

RESUMO

Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are highly toxic organic compounds, and very few studies on their presence in polar environments have been conducted. This study assessed the concentration and distribution of PCDD/Fs, dioxin-like polychlorinated biphenyls (DL-PCBs), and non-dioxin-like polychlorinated biphenyls in selected fjords of the Svalbard archipelago in Norway. The ∑PCDD/Fs observed for Raudfjorden, Smeerenburgfjorden, Magdalenefjorden, and Kongsfjorden were 22.80 pg/g, 25.65 pg/g, 18.27 pg/g, 33.50 pg/g, and 21.69 pg/g, respectively. The WHO's toxic equivalents values of both ∑PCDD/Fs and ∑DL-PCBs were comparatively higher than those reported in other polar regions. Of the four fjords studied, the sediments from Kongsfjorden exhibited the presence of the most toxic materials, including PCB-126 and PCB-169, of DL-PCBs. More than 80% of the total analysed PCDD/Fs were comprised of highly chlorinated congeners (hexa-to-octa forms). More studies are required to understand the destination and transport of these hazardous pollutants in high Arctic sediments.


Assuntos
Benzofuranos , Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Dibenzofuranos , Dibenzofuranos Policlorados/análise , Dioxinas/análise , Estuários , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Svalbard
5.
Sci Total Environ ; 815: 152727, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974001

RESUMO

The ever-increasing prevalence of antibiotic-resistant bacteria(ARB), primarily due to the frequent use and misuse of antibiotics, is an issue of serious global concern. Migratory birds have a significant role in dissemination of ARB, as they acquire resistant bacteria from reservoirs and transport them to other environments which are relatively less influenced by anthropogenically. We have investigated the prevalence of ARB in a long-distance migratory bird, the Arctic tern (Sterna paradisaea) captured from the Svalbard Archipelago. The birds were tagged with geolocators to track their extraordinary long migration, and the cloacal samples were collected before the migration and after the migration by recapturing the same birds. The tracking of 12 birds revealed that during the annual cycle they underwent a total of 166 stopovers (11-18, mean = 3.8) and recovery points along the Atlantic Ocean. Twelve major bacterial genera were identified from Arctic tern cloacal samples, which are dominated by Staphylococcus spp. and Aerococcus spp. The bacterial isolates showed resistance against 16 antibiotics (before migration) and 17 antibiotics (after migration) out of 17 antibiotics tested. Resistance to ß-lactam and quinolone class of antibiotics were frequent among the bacteria. The study highlights the potential role of Arctic tern in the dissemination of multidrug resistant bacteria across far and wide destinations, especially to the polar environments.


Assuntos
Charadriiformes , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos/farmacologia , Aves , Farmacorresistência Bacteriana Múltipla
6.
World J Microbiol Biotechnol ; 38(2): 28, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989908

RESUMO

The permafrost in the polar regions is vital for maintaining the status quo of the earth's climate by limiting greenhouse gas emissions. The present study aims to investigate the seasonal variations and the influence of physicochemical parameters on the bacterial diversity and community structure of active layer permafrost (AL) around Ny-Ålesund, Svalbard. The AL soil samples were collected from four different geographical locations around Ny-Ålesund during the winter and summer seasons. The 16S rDNA amplicon sequencing was carried out to investigate the diversity and distribution profiles of bacterial communities among the collected AL samples. Physico-chemical parameters including soil pH, moisture content, total carbon (TC), total nitrogen (TN), and trace metals concentrations were measured. Bacterial phyla, Proteobacteria (15.4%-26%) and Chloroflexi (9.6%-22.5%) were predominantly distributed across both seasons. In the winter samples, Verrucomicrobiota (14.12%-23.39%) phylum, consisting of genera Chthoniobacter and Opitutus were highly abundant (Lefse, p < 0.05), whereas in summer bacterial genera belonging to Gemmatimonadota (3.3%-13.74%) and Acidobacteriota (18.02%-28.52%) phyla were highly abundant. The bacterial richness and diversity index were not significantly different between the winter and summer seasons. Principal coordinate analysis (PCoA) has revealed a distinct grouping between two seasons (PERMANOVA, p < 0.05). Bacterial community structure was significantly varied between winter and summer seasons, whereas the physico-chemical variable, TN, influenced the community structure. About 37.8% of the total operational taxonomic units (OTUs) were shared between seasons, whereas 25.4% and 36.8% of OTUs were unique to the summer and winter seasons. The present study revealed that the conditions prevailing during winter and summer has shaped bacterial community structure in AL samples albeit the stable diversity and most of the variation was explained by TN, indicating its critical role in oligotrophic permafrost.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Nitrogênio/metabolismo , Pergelissolo/microbiologia , Microbiologia do Solo , Biodiversidade , DNA Ribossômico/genética , Microbiota , RNA Ribossômico 16S , Estações do Ano , Solo , Svalbard
7.
World J Microbiol Biotechnol ; 37(8): 133, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34255189

RESUMO

Kongsfjorden, an Arctic fjord is significantly affected by the glacier melt and Atlantification, both the processes driven by accelerated warming in the Arctic. This has lead to changes in primary production, carbon pool and microbial communities, especially that in the sediment. In this study, we have examined the bacterial community structure of surface (0-2 cm) and subsurface (3-9 cm) sediments of Kongsfjorden using the high throughput sequencing analysis. Results revealed that bacterial community structure of Kongsfjorden sediments were dominated by phylum Proteobacteria followed by Bacteroidetes and Epsilonbacteraeota. While α- and γ-Proteobacterial class were dominant in surface sediments; δ-Proteobacteria were found to be predominant in subsurface sediments. The bacterial community structure in the surface and subsurface sediments showed significant variations (p ≤ 0.05). Total organic carbon could be one of the major parameters controlling the bacterial diversity in the surface and subsurface sediments. Functional prediction analysis indicated that the bacterial community could be involved in the degradation of complex organic compounds such as glycans, glycosaminoglycans, polycyclic aromatic hydrocarbons and also in the biosynthesis of secondary metabolites.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carbono/análise , Carbono/metabolismo , Sedimentos Geológicos/química , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Filogenia , Metabolismo Secundário
8.
Antonie Van Leeuwenhoek ; 114(9): 1339-1360, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34148162

RESUMO

Sedimentary environments in the Arctic are known to harbor diverse microbial communities playing a crucial role in the remineralization of organic matter and associated biogeochemical cycles. In this study, we used a combination of culture-dependent and culture-independent approaches to understanding the bacterial community composition associated with the sediments of a terrestrial versus fjord system in the Svalbard Arctic. Community-level metabolic profiling and growth response of retrieved bacterial isolates towards different carbon substrates at varying temperatures were also studied to assess the metabolic response of communities and isolates in the system. Bacterial species belonging to Cryobacterium and Psychrobacter dominated the terrestrial and fjord sediment retrievable fraction. Amplicon sequencing analysis revealed higher bacterial diversity in the terrestrial sediments (Shannon index; 8.135 and 7.935) as compared to the fjord sediments (4.5-5.37). Phylum Proteobacteria and Bacteroidetes dominated both terrestrial and fjord sediments. Phylum Verrucomicrobia and Cyanobacteria were abundant in terrestrial sediments while Epsilonbacteraeota and Fusobacteriia dominated the fjord sediments. Significant differences were observed in the carbon substrate utilization profiles between the terrestrial and fjord sediments at both 4 °C and 20 °C incubations (p < 0.005). Utilization of N-acetyl-D-glucosamine, D-mannitol and Tween-80 by the sediment communities and bacterial isolates from both systems, irrespective of their temperature incubations implies the affinity of bacteria for such substrates as energy sources and for their survival in cold environments. Our results suggest the ability of sediment bacterial communities to adjust their substrate utilization profiles according to condition changes in the ecosystems and are found to be less influenced by their phylogenetic relatedness.


Assuntos
Sedimentos Geológicos , Microbiota , Regiões Árticas , Metaboloma , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Verrucomicrobia
9.
Mol Genet Genomics ; 296(4): 893-903, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33909166

RESUMO

Whole-genome sequence of Pseudomonas sp. Kongs-67 retrieved from Kongsfjorden, an Arctic fjord, has been investigated to understand the molecular machinery required for microbial association and survival in a polar fjord. The genome size of Kongs-67 was 4.5 Mb and was found to be closely related to the Antarctic P. pelagia strain CL-AP6. This genome encodes for chemotaxis response regulator proteins (CheABB1RR2VWYZ), chemoreceptors (methyl-accepting chemotaxis proteins), and flagellar system proteins (FliCDEFGOPMN, FlhABF, FlgBCDEFGHIJKL, and MotAB proteins) vital in cellular interactions in the dynamic fjord environment. A high proportion of genes were assigned to biofilm formation (pgaABCD operon) and signal transduction protein categories (EnvZ/OmpR, CpxA/CpxR, PhoR/PhoB, PhoQ) indicating that the biofilm formation in Kongs-67 could be tightly regulated in response to the availability of signalling-metabolites. The genome of Kongs-67 encoded for HemBCD, CbiA, CobABNSTOQCDP, and BtuBFR proteins involved in cobalamin biosynthesis and transport along with proteins for siderophore-mediated iron channelling (PchR, Fur protein, FpvA); crucial in a microbial association. The genomes of Arctic strain Kongs-67 and Antarctic strain CL-AP6 were similar which is indicative of retainment of the core genes in the polar Pseudomonas strains that could be vital in conferring evolutionary adaptation for its survival in a polar fjord. Thus, our study contributes to the knowledge on the genetics of a polar Pseudomonas member exhibiting biosynthetic potentials and suggest Pseudomonas sp. Kongs-67 as a suitable candidate for the investigation of functional aspects of molecular adaptations in the polar marine environment.


Assuntos
Clima Frio , Viabilidade Microbiana/genética , Pseudomonas , Adaptação Biológica/genética , Organismos Aquáticos/genética , Regiões Árticas , Proteínas de Bactérias/genética , Estuários , Genoma Bacteriano/genética , Óperon , Pseudomonas/classificação , Pseudomonas/genética , Análise de Sequência de DNA
10.
World J Microbiol Biotechnol ; 37(3): 41, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544264

RESUMO

Diazotrophy in the Arctic environment is poorly understood compared to tropical and subtropical regions. Hence in this study, we report the abundance and diversity of diazotrophs in Arctic fjord sediments and elucidate the role of environmental factors on the distribution of diazotrophs. The study was conducted during the boreal summer in the Kongsfjorden, an Arctic fjord situated in the western coast of Spitsbergen. The abundance of nifH gene was measured through quantitative real-time PCR and the diversity of diazotrophs was assessed by nifH targeted clone library and next generation sequence analysis. Results revealed that the abundance of nifH gene in the surface sediments ranged from 2.3 × 106 to 3.7 × 107 copies g- 1. The δ-proteobacterial diazotrophs (71% of total sequence) were the dominant class observed in this study. Major genera retrieved from the sequence analysis were Desulfovibrionaceae (25% of total sequence), Desulfuromonadaceae (18% of total sequence) and Desulfobacteriaceae (10% of total sequence); these are important diazotrophic iron and sulfur-reducing bacterial clade in the Kongsfjorden sediments. The abundance of nifH gene showed a significant positive correlation TOC/TN ratio (r2 = 0.96, p ≤ 0.05) and total organic carbon (p ≤ 0.05) content in the fjord sediments. The higher TOC/TN ratio (4.24-14.5) indicated low nitrogen content organic matter in the fjord sediments through glacier runoff, which enhances the abundance and diversity of nitrogen fixing microorganisms.


Assuntos
Bactérias/classificação , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Oxirredutases/genética , Regiões Árticas , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fixação de Nitrogênio , Filogenia , Análise de Sequência de DNA/métodos
11.
Mar Genomics ; 55: 100804, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32665084

RESUMO

The whole genome of Alteromonas pelagimontana 5.12T, a psychrotolerant deep-sea bacterium isolated from the sediment sample of eastern Southwest Indian Ridge, was sequenced and analysed for understanding its metabolic capacities and biosynthesis potential of natural products. The circular genome contained 4.3 Mb with a GC content of 42.6 mol%. Genomic data mining revealed a gene cluster for heavy metal resistance (czcABC, acrB, arsR1, copA, nikA, mntH, mntP), exopolysaccharides (EPS; epsCDEFHLM) and polyhydroxyalkanoates (PHA; phbC) production, as well as genes involved in complex polysaccharide degradation. Genes that could allow strain 5.12T to cope with acid stress (ibaG) and heat shock (ibpA, hslR) were observed along with ten chaperone-encoding genes which could possibly play vital role in adaptability of this strain to the hydrothermally influenced environment. Gene clusters for secondary metabolite production such as bacteriocin and arylpolyene were also predicted. Thus, genome sequencing and data mining provided insights into the molecular mechanisms involved in the adaptation to hydrothermally influenced deep-sea environment that could promote further experimental exploration.


Assuntos
Alteromonas/genética , Genoma Bacteriano , Sedimentos Geológicos/microbiologia , Fontes Hidrotermais/microbiologia , Oceano Índico , Polissacarídeos/metabolismo , Sequenciamento Completo do Genoma
12.
Genomics ; 113(1 Pt 2): 884-891, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096255

RESUMO

Genome of Alcanivorax sp. IO_7, an alkane degrading deep-sea bacteria isolated from hydrothermally-influenced Southwest Indian Ridge was sequenced and analysed. Genomic data mining revealed gene clusters for degrading n-alkane and cycloalkanes, including biosurfactant production. The strain was shown to grow on hexadecane as its sole carbon source, supporting the findings of genomic analysis. Presence of cyclohexanone monooxygenase among genomic islands suggest that this strain may have used gene transfer to enhance its hydrocarbon degradation ability. Genes encoding for heavy metal resistance, multidrug resistance and multiple natural product biosynthesis crucial for survival in the hydrothermally influenced deep sea environment were detected. In our comparative genome analysis, it was evident that marine Alcanivorax strains contain a suite of enzymes for n-alkane and haloalkanoate degradation. Comparative genome and genomic synteny analysis provided insights into the physiological features and adaptation strategies of Alcanivorax sp. IO_7 in the deep-sea hydrothermal environment.


Assuntos
Alcanivoraceae/genética , Genoma Bacteriano , Alcanivoraceae/efeitos dos fármacos , Alcanivoraceae/isolamento & purificação , Alcanos/metabolismo , Resistência a Medicamentos , Ilhas Genômicas , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Água do Mar/microbiologia
13.
World J Microbiol Biotechnol ; 36(7): 107, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32638161

RESUMO

The fjords of west Spitsbergen Svalbard, Arctic Norway, are undergoing a transformation as the impact of nutrient rich warmer Atlantic water is significantly altering the primary production and subsequently the carbon pool. Members of the phylum Planctomycetes are ubiquitous in marine systems and are important in the mineralization of organic matter. Hence, the phylogenetic diversity and distribution pattern of Planctomycetes in the surface sediments of a high Arctic fjord, the Kongsfjorden were studied. Further, considering the release of ammonium as a part of mineralization, the diversity of bacterial community involved in anaerobic ammonium oxidation (anammox) was also evaluated. The highly diverse Planctomycetes community, which consisted mainly of uncultivated and uncharacterized Planctomycetes, was observed in the study area with a total of 162 OTUs. The major genera observed were Blastopirellula (13.3%), Gimesia (13%), Rhodopirellula (10%), Planctomicrobium (2%) and Thermogutta (1.6%). Functional prediction revealed the dominance of carbohydrate metabolism genes and the presence of gene clusters for production of secondary metabolites and xenobiotic degradation. Anammox bacterial sequences were detected from all the samples with a total of 52 OTUs. Most of the OTUs belonged to the genus Candidatus Scalindua and three distinct clusters were observed in the phylogenetic tree, (a) Ca. Scalindua brodae (49%), (b) Ca. Scalindua wagneri (31%) and (c) Ca. Scalindua marina (12%) based on their phylogenic distance. Our findings suggest the existence of highly diverse Planctomycetes and anammox bacterial community with regional variants in the sediments of Kongsfjorden.


Assuntos
Bactérias/classificação , Crescimento Quimioautotrófico/fisiologia , Estuários , Sedimentos Geológicos/microbiologia , Filogenia , Planctomycetales/classificação , Água do Mar/microbiologia , Compostos de Amônio , Anaerobiose , Regiões Árticas , Oceano Atlântico , Bactérias/genética , DNA Bacteriano , Microbiota , Planctomycetales/genética , RNA Ribossômico 16S/genética
14.
Environ Monit Assess ; 192(8): 538, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32699977

RESUMO

Mercury and its speciation in aquatic ecosystems have been assessed globally. Even though previous studies were limited to Arctic freshwater lakes, they are highly significant in the context of the changing climate. The present study is based on sediment samples collected from three Arctic freshwater lakes over a period of 4 years (2015-2018). The samples were analysed for total mercury (THg), methyl mercury (MHg), and various mercury fractions. The observed mean THg and MHg concentrations were 22.23 ng/g and 0.41 ng/g respectively; these values were comparable with those for other Arctic freshwater lakes. The mercury content significantly varied among the years as well as among the lakes. Changes in snowdrift and meltwater inputs, which are the major sources of water for the lakes, may have influenced the sediment mercury content along with geographical location and increased productivity. The results of MHg indicated the susceptibility of lake sediments to methylation. The major fractions observed were the organo-chelated form of mercury, followed by the elemental and water-soluble forms. These results indicate the availability of mercury for methylation. Hence, it is necessary to conduct more studies on the influence of climate change, mercury release through permafrost melting, and atmospheric deposition.


Assuntos
Mercúrio/análise , Poluentes Químicos da Água/análise , Regiões Árticas , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Lagos
15.
Sci Total Environ ; 718: 135264, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31848061

RESUMO

The bacterial community composition of a valley glacier in Svalbard, its pro-glacial channels, and the associated downstream fjord ecosystem was investigated so as to figure out the degree to which downslope transport of microbes from the glacier systems along a hydrological continuum impose an effect on the patterns of diversity in the fjord system. A combination of culture based and high-throughput amplicon sequencing approach was followed which resulted in significant variation (R = 0.873, p = 0.001) in the bacterial community structure between these ecosystems. Dominance of sequences belonging to class ß-Proteobacteria was seen in the glacier snow, ice and melt waters (MW) while a relatively higher abundance of OTUs belonging to α-Proteobacteria and Verrucomicrobiae demarcated the fjord waters. Similarity percentage (SIMPER) analysis of the Operational Taxonomic Units (OTUs) showed that OTU 1,105,280 (9.15%) and OTU 331 (6.5%) belonging to Burkholderiaceae (ß-proteobacteria) and OTU 101,660 (5.76%) and OTU 520 (5.07%) belonging to Rhodobacteraceae (α-proteobacteria) contributed maximum to the overall dissimilarity between the sampling sites. The bacterial community from the MWs were found to be true signatures of the glacier ecosystem while the Kongsfjorden bacterial fraction mostly represented heterotrophic marine taxa influenced by warm Atlantic waters and presence of organic matter. Significant presence of unknown taxa in the MWs suggests the need to study such unexplored, transient niches for a better understanding of the associated microbial processes. Among the various environmental parameters measured, nutrients (NO3- and SiO42-) were found to exhibit strong association with the MW bacterial community while temperature, trace metals, Cl- and SO42- ions were found to influence the fjord bacterial community. The significant differences in the bacterial community composition between the glacier and the fjord ecosystem suggest the unique nature of these systems which in turn is influenced by the associated environmental parameters.


Assuntos
Camada de Gelo , Regiões Árticas , Estuários , Microbiota , Svalbard
16.
Data Brief ; 22: 195-198, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30581925

RESUMO

The data represents the diversity and distribution of fungal communities in Kongsfjorden, Arctic. The metagenomic DNA analysis was performed using next generation sequencing technology (Illumina MiSeq). Sequence data from amplified internal transcribed spacers (ITS) 2 region with fungal-specific primers exposed 83,417 sequences belonging to 7 operational taxonomic units (OTUs). Five of these OTUs belonged to Ascomycota, and one each to Basidiomycota and unclassified group. Aspergillus, Candida, Emericella and Nakaseomyces were the different genera identified and they belonged to the fungal orders Helotiales, Eurotiales and Saccharomycetales. The data explored the presence of important fungal communities in the Arctic marine ecosystem. Metagenome data is now available at NCBI under the Sequence Read Archive (SRA) database with accession no. SRP152688.

17.
Mar Pollut Bull ; 131(Pt A): 453-459, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29886971

RESUMO

The sedimentation rates in Arctic fjords are influenced by the changes in the glacial inputs. The recent studies have indicated the retreat of glaciers due to climate change and subsequent increase in melt water outflow with high content of debris. The debris may contain natural and anthropogenically originated contaminants. The present study analysed the sedimentation rate in inner Kongsfjorden, Ny-Ålesund, Svalbard using 210Pb/210Po dating technique. The sedimentation rate ranged between 0.22 and 0.37 cm/year during the last 112 years. The average sedimentation rate obtained was 0.28 cm/y. The rate has been increased during the last 20 years and it might be due to the increased influx of glacial melt water containing debris. Metals and other elements showed an increasing trend towards the surface and observed high deposition rate since 1970s, indicating influence of industrial emissions and it can be a potential threat to Arctic biota.


Assuntos
Sedimentos Geológicos/análise , Metais/análise , Poluentes Químicos da Água/análise , Regiões Árticas , Monitoramento Ambiental/métodos , Estuários , Sedimentos Geológicos/química , Camada de Gelo , Radioisótopos de Chumbo/análise , Polônio/análise , Svalbard
18.
Data Brief ; 21: 2522-2525, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30761333

RESUMO

In this study, Illumina Miseq sequencing of 16S rRNA gene amplicon was performed on sediments collected from Krossfjorden, Arctic for analyzing the bacterial community structure. Metagenome contained 15,936 sequences with 5,809,491 bp size and 53% G+C content. Metagenome sequence information are now available at NCBI under the Sequence Read Archive (SRA) database with accession no. SRP159159. Taxonomic hits distribution from MG-RAST analysis revealed the dominance of Alpha- and Gamma-subdivisions of Proteobacteria (88.89%) along with Bacteriodetes (8.89%) and Firmicutes (2.22%). Predominant species were Alteromonadales bacterium TW-7 (24%), Pseudoalteromonas haloplanktis (20%) and Pseudoalteromonas spp. SM9913 (18%). MG-RAST assisted analysis also detected the presence of a variety of marine taxa like Bacteriodes, Pseudovibrio, Marinobacter, Idiomarina, Teredinibacter, etc. which take part in key ecological functions and biogeochemical activities of Arctic fjord ecosystems.

19.
Environ Monit Assess ; 190(1): 22, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29243078

RESUMO

Pollution and fate of pollutants in polar region are important topics of investigation in the last several decades. We have analysed sediment samples from Kongsfjorden and Krossfjorden, two sites from Arctic region, and detected a number of emerging contaminants (ECs) using high-resolution mass spectrometry connected to UPLC (LC-Q-ToF-MS). Out of the seven sampling sites selected, bisphenol S (BPS), an identified pollutant and plasticiser, was detected and quantified in three sediment samples from Kongsfjorden (≈ 0.2 ppm). Four major surfactants (decylbenzenesulphonic acid, undecylbenzenesulphonic acid, 2-dodecylbenzenesulphonic acid and tridecylbenzenesulphonic acid) were also identified. A possible metabolite of BPS (sulphur trioxide derivative of BPS) was identified in one of the samples. It is proposed that the presence of ECs is the result of human activities in the region for a long time. To the best our knowledge, this is the first report on the identification of BPS and surfactants in the Arctic region.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Fenóis/análise , Sulfonas/análise , Tensoativos/análise , Regiões Árticas , Sedimentos Geológicos/química , Atividades Humanas , Humanos , Espectrometria de Massas
20.
Int J Syst Evol Microbiol ; 67(10): 4032-4038, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28905702

RESUMO

A novel exopolysaccharide-producing strain, designated as 5.12T, was isolated from a sediment sample from the Southwest Indian Ridge, Indian Ocean. The strain was Gram-stain-negative, motile, strictly aerobic, and oxidase- and catalase-positive. It grew optimally at 35 °C, at pH 6.0 and in the presence of 3.5 % (w/v) NaCl. Its major isoprenoid quinone was ubiquinone-8 (Q-8) and summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and C18 : 1ω7c were the major cellular fatty acids. The DNA G+C content was 46.1 mol%. 16S rRNA gene sequence analysis suggested that strain 5.12T is a member of the genus Alteromonas. Strain 5.12T exhibited close 16S rRNA gene sequence similarity to Alteromonas lipolytica JW12T (96.1 %), Alteromonas hispanica F-32T (95.9 %), Alteromonas confluentis DSSK2-12T (95.9 %), Alteromonas litorea TF-22T (95.6 %) and Alteromonas mediterranea DET (95.5 %). Strain 5.12T contained phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids. Owing to significant differences in the 16S rRNA gene sequences, as well as the phenotypic and chemotaxonomic characteristics, the novel isolate described here merits classification as a representative of a novel species of the genus Alteromonas, for which the name Alteromonas pelagimontana sp. nov. is proposed. The type strain of this species is 5.12T (LMG 29661T= MCC 3250T).


Assuntos
Alteromonas/classificação , Filogenia , Água do Mar/microbiologia , Alteromonas/genética , Alteromonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Oceano Índico , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...