Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 74(21): 6071-81, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25189529

RESUMO

Asian nonsmoking populations have a higher incidence of lung cancer compared with their European counterparts. There is a long-standing hypothesis that the increase of lung cancer in Asian never-smokers is due to environmental factors such as second-hand smoke. We analyzed whole-genome sequencing of 30 Asian lung cancers. Unsupervised clustering of mutational signatures separated the patients into two categories of either all the never-smokers or all the smokers or ex-smokers. In addition, nearly one third of the ex-smokers and smokers classified with the never-smoker-like cluster. The somatic variant profiles of Asian lung cancers were similar to that of European origin with G.C>T.A being predominant in smokers. We found EGFR and TP53 to be the most frequently mutated genes with mutations in 50% and 27% of individuals, respectively. Among the 16 never-smokers, 69% had an EGFR mutation compared with 29% of 14 smokers/ex-smokers. Asian never-smokers had lung cancer signatures distinct from the smoker signature and their mutation profiles were similar to European never-smokers. The profiles of Asian and European smokers are also similar. Taken together, these results suggested that the same mutational mechanisms underlie the etiology for both ethnic groups. Thus, the high incidence of lung cancer in Asian never-smokers seems unlikely to be due to second-hand smoke or other carcinogens that cause oxidative DNA damage, implying that routine EGFR testing is warranted in the Asian population regardless of smoking status.


Assuntos
Dano ao DNA/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Povo Asiático/genética , Receptores ErbB/genética , Feminino , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Fatores de Risco , Proteína Supressora de Tumor p53/genética
2.
Genome Med ; 4(11): 88, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23181697

RESUMO

Genomic variants with a key role in causing cancer or affecting the response to cancer therapeutics need to be identified so that they can be targeted for therapy. The transFIC tool aims to identify somatic point mutations that drive cancer in sequencing projects. This package is available as a web service, a stand-alone program and a website. It improves the functional prediction scores generated by popular established prediction tools and will be useful to cancer researchers. SEE RESEARCH ARTICLE: http://genomemedicine.com/content/4/11/89.

3.
Methods Mol Biol ; 628: 307-19, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20238089

RESUMO

As databases of genome data continue to grow, our understanding of the functional elements of the genome grows as well. Many genetic changes in the genome have now been discovered and characterized, including both disease-causing mutations and neutral polymorphisms. In addition to experimental approaches to characterize specific variants, over the past decade, there has been intense bioinformatic research to understand the molecular effects of these genetic changes. In addition to genomic experimental assays, the bioinformatic efforts have focused on two general areas. First, researchers have annotated genetic variation data with molecular features that are likely to affect function. Second, statistical methods have been developed to predict mutations that are likely to have a molecular effect. In this protocol manuscript, methods for understanding the molecular functions of single nucleotide polymorphisms (SNPs) and mutations are reviewed and described. The intent of this chapter is to provide an introduction to the online tools that are both easy to use and useful.


Assuntos
Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Biologia Computacional , Predisposição Genética para Doença , Humanos , Mutação , Splicing de RNA
4.
Hum Mutat ; 31(3): 335-46, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20052762

RESUMO

An important challenge in translational bioinformatics is to understand how genetic variation gives rise to molecular changes at the protein level that can precipitate both monogenic and complex disease. To this end, we compiled datasets of human disease-associated amino acid substitutions (AAS) in the contexts of inherited monogenic disease, complex disease, functional polymorphisms with no known disease association, and somatic mutations in cancer, and compared them with respect to predicted functional sites in proteins. Using the sequence homology-based tool SIFT to estimate the proportion of deleterious AAS in each dataset, only complex disease AAS were found to be indistinguishable from neutral polymorphic AAS. Investigation of monogenic disease AAS predicted to be nondeleterious by SIFT were characterized by a significant enrichment for inherited AAS within solvent accessible residues, regions of intrinsic protein disorder, and an association with the loss or gain of various posttranslational modifications. Sites of structural and/or functional interest were therefore surmised to constitute useful additional features with which to identify the molecular disruptions caused by deleterious AAS. A range of bioinformatic tools, designed to predict structural and functional sites in protein sequences, were then employed to demonstrate that intrinsic biases exist in terms of the distribution of different types of human AAS with respect to specific structural, functional and pathological features. Our Web tool, designed to potentiate the functional profiling of novel AAS, has been made available at http://profile.mutdb.org/.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Polimorfismo Genético , Alelos , Aminoácidos/química , Aminoácidos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Glicosilação , Humanos , Internet , Mutação de Sentido Incorreto , Fosforilação , Análise de Sequência de Proteína
5.
Bioinformatics ; 25(21): 2744-50, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19734154

RESUMO

MOTIVATION: Advances in high-throughput genotyping and next generation sequencing have generated a vast amount of human genetic variation data. Single nucleotide substitutions within protein coding regions are of particular importance owing to their potential to give rise to amino acid substitutions that affect protein structure and function which may ultimately lead to a disease state. Over the last decade, a number of computational methods have been developed to predict whether such amino acid substitutions result in an altered phenotype. Although these methods are useful in practice, and accurate for their intended purpose, they are not well suited for providing probabilistic estimates of the underlying disease mechanism. RESULTS: We have developed a new computational model, MutPred, that is based upon protein sequence, and which models changes of structural features and functional sites between wild-type and mutant sequences. These changes, expressed as probabilities of gain or loss of structure and function, can provide insight into the specific molecular mechanism responsible for the disease state. MutPred also builds on the established SIFT method but offers improved classification accuracy with respect to human disease mutations. Given conservative thresholds on the predicted disruption of molecular function, we propose that MutPred can generate accurate and reliable hypotheses on the molecular basis of disease for approximately 11% of known inherited disease-causing mutations. We also note that the proportion of changes of functionally relevant residues in the sets of cancer-associated somatic mutations is higher than for the inherited lesions in the Human Gene Mutation Database which are instead predicted to be characterized by disruptions of protein structure. AVAILABILITY: http://mutdb.org/mutpred CONTACT: predrag@indiana.edu; smooney@buckinstitute.org.


Assuntos
Substituição de Aminoácidos/genética , Biologia Computacional/métodos , Proteínas/química , Sequência de Aminoácidos , Inteligência Artificial , Bases de Dados de Proteínas , Humanos , Dados de Sequência Molecular , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...