Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Invest Dermatol ; 144(2): 252-262.e4, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37598867

RESUMO

Tissue transcriptomics is used to uncover molecular dysregulations underlying diseases. However, the majority of transcriptomics studies focus on single diseases with limited relevance for understanding the molecular relationship between diseases or for identifying disease-specific markers. In this study, we used a normalization approach to compare gene expression across nine inflammatory skin diseases. The normalized datasets were found to retain differential expression signals that allowed unsupervised disease clustering and identification of disease-specific gene signatures. Using the NS-Forest algorithm, we identified a minimal set of biomarkers and validated their use as diagnostic disease classifier. Among them, PTEN was identified as being a specific marker for cutaneous lupus erythematosus and found to be strongly expressed by lesional keratinocytes in association with pathogenic type I IFNs. In fact, PTEN facilitated the expression of IFN-ß and IFN-κ in keratinocytes by promoting activation and nuclear translocation of IRF3. Thus, cross-comparison of tissue transcriptomics is a valid strategy to establish a molecular disease classification and to identify pathogenic disease biomarkers.


Assuntos
Dermatite , Lúpus Eritematoso Cutâneo , Lúpus Eritematoso Sistêmico , Humanos , Biomarcadores/metabolismo , Dermatite/patologia , Perfilação da Expressão Gênica , Queratinócitos/metabolismo , Lúpus Eritematoso Cutâneo/diagnóstico , Lúpus Eritematoso Cutâneo/genética , Lúpus Eritematoso Cutâneo/metabolismo , Lúpus Eritematoso Sistêmico/genética , PTEN Fosfo-Hidrolase/genética , Pele/patologia
2.
J Allergy Clin Immunol ; 153(1): 146-160, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506977

RESUMO

BACKGROUND: Prurigo nodularis (PN) is a chronic neuroimmune skin disease characterized by bilaterally distributed pruritic hyperkeratotic nodules on extremities and trunk. Neuroimmune dysregulation and chronic scratching are believed to both induce and maintain the characteristic lesions. OBJECTIVES: This study sought to provide a comprehensive view of the molecular pathogenesis of PN at the single-cell level to identify and outline key pathologic processes and the cell types involved. Features that distinguish PN skin from the skin of patients with atopic dermatitis were of particular interest. We further aimed to determine the impact of the IL31RA antagonist, nemolizumab, and its specificity at the single-cell level. METHODS: Single-cell RNA-sequencing of skin from 15 healthy donors and nonlesional and lesional skin from 6 patients each with PN and atopic dermatitis, combined with spatial-sequencing using the 10x Visium platform. Integration with bulk RNA-sequencing data from patients treated with nemolizumab. RESULTS: This study demonstrates that PN is an inflammatory skin disease characterized by both keratinocyte proliferation and activation of profibrotic responses. This study also demonstrates that the COL11A1+ fibroblast subset is a major contributor to fibrosis and is predominantly found in the papillary dermis of PN skin. Activation of fibrotic responses is the main distinguishing feature between PN and atopic dermatitis skin. This study further shows the broad effect of nemolizumab on PN cell types, with a prominent effect driving COL11A1+ fibroblast and keratinocyte responses toward normal. CONCLUSIONS: This study provides a high-resolution characterization of the cell types and cellular processes activated in PN skin, establishing PN as a chronic fibrotic inflammatory skin disease. It further demonstrates the broad effect of nemolizumab on pathological processes in PN skin.


Assuntos
Dermatite Atópica , Prurigo , Humanos , Prurigo/tratamento farmacológico , Dermatite Atópica/patologia , Pele/patologia , Doença Crônica , RNA , Prurido/patologia
3.
JAMA Dermatol ; 159(9): 977-985, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556125

RESUMO

Importance: Prurigo nodularis (PN) is a debilitating skin disease characterized by intense pruritus and hyperkeratotic skin nodules. Nemolizumab, a monoclonal antibody targeting interleukin 31 receptor α, is a promising novel therapy for the treatment of moderate to severe PN. The biological mechanisms by which nemolizumab promotes improvement of itch and skin lesions in PN are unknown. Objective: To characterize changes in plasma protein biomarkers associated with clinical response to nemolizumab in patients with PN. Design, Setting, and Participants: This multicenter cohort study included patients recruited from Austria, France, Germany, Poland, and the US from a phase 2 clinical trial. Adults diagnosed with moderate to severe PN with severe pruritus for at least 6 months were included in the original trial. Patients in the nemolizumab group were included in the present study if they achieved at least a 4-point decrease in the Peak Pruritus Numerical Rating Scale (PP-NRS) from baseline to week 12 during nemolizumab treatment. Placebo controls did not experience a 4-point decrease in PP-NRS. Mass spectrometry with tandem mass tags to enrich skin-specific protein detection was used to characterize changes in plasma protein expression in nemolizumab and placebo groups. Data were collected from November 2, 2017, to September 26, 2018, and analyzed from December 6, 2019, to April 8, 2022. Intervention: As part of the clinical trial, patients were treated with 3 doses of nemolizumab or placebo at 0, 4, and 8 weeks. Main Outcomes and Measures: Changes in plasma and epidermal protein expression in nemolizumab-treated patients compared with the placebo group at 0, 4, and 12 weeks. Results: Among the 38 patients included in the analysis (22 women and 16 men; mean [SD] age, 55.8 [15.8] years), enrichment analysis of canonical pathways, biological functions, and upstream regulators showed downregulation of terms involving inflammation (IL-6, acute-phase response, signal transducer and activator of transcription 3, and interferon γ), neural processes (synaptogenesis signaling and neuritogenesis), tissue remodeling and fibrosis (transforming growth factor ß1 and endothelin-1), and epidermal differentiation (epithelial mesenchymal transition) in the plasma of nemolizumab group. Conclusions and Relevance: In this cohort study, differences between nemolizumab and placebo groups included modulation of inflammatory signaling, neural development, and epithelial differentiation, suggesting a promising potential approach for clinical management of PN.


Assuntos
Prurigo , Adulto , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Prurigo/tratamento farmacológico , Prurigo/complicações , Estudos de Coortes , Prurido/etiologia , Prurido/complicações , Biomarcadores
6.
J Allergy Clin Immunol ; 150(6): 1415-1426.e9, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35917932

RESUMO

BACKGROUND: Patients with asthma often suffer from frequent respiratory viral infections and reduced virus clearance. Lung resident memory T cells provide rapid protection against viral reinfections. OBJECTIVE: Because the development of resident memory T cells relies on the lung microenvironment, we investigated the impact of allergen sensitization on the development of virus-specific lung resident memory T cells and viral clearance. METHODS: Mice were sensitized with house dust mite extract followed by priming with X47 and a subsequent secondary influenza infection. Antiviral memory T-cell response and protection to viral infection was assessed before and after secondary influenza infection, respectively. Gene set variation analysis was performed on data sets from the U-BIOPRED asthma cohort using an IFN-γ-induced epithelial cell signature and a tissue resident memory T-cell signature. RESULTS: Viral loads were higher in lungs of sensitized compared with nonsensitized mice after secondary infection, indicating reduced virus clearance. X47 priming induced fewer antiviral lung resident memory CD8 T cells and resulted in lower pulmonary IFN-γ levels in the lungs of sensitized as compared with nonsensitized mice. Using data from the U-BIOPRED cohort, we found that patients with enrichment of epithelial IFN-γ-induced genes in nasal brushings and bronchial biopsies were also enriched in resident memory T-cell-associated genes, had more epithelial CD8 T cells, and reported significantly fewer exacerbations. CONCLUSIONS: The allergen-sensitized lung microenvironment interferes with the formation of antiviral resident memory CD8 T cells in lungs and virus clearance. Defective antiviral memory response might contribute to increased susceptibility of patients with asthma to viral exacerbations.


Assuntos
Influenza Humana , Células T de Memória , Camundongos , Animais , Humanos , Pulmão , Linfócitos T CD8-Positivos , Alérgenos
7.
J Allergy Clin Immunol ; 149(4): 1329-1339, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34857395

RESUMO

BACKGROUND: Prurigo nodularis (PN) is a debilitating, difficult-to-treat, intensely pruritic, chronic inflammatory skin disease characterized by hyperkeratotic skin nodules. The pathogenesis of PN is not well understood but is believed to involve cross talk between sensory nerve fibers, immune cells, and the epidermis. It is centered around the neuroimmune cytokine IL-31, driving an intractable itch-scratch cycle. OBJECTIVE: We sought to provide a comprehensive view of the transcriptomic changes in PN skin and characterize the mechanism of action of the anti-IL-31 receptor inhibitor nemolizumab. METHOD: RNA sequencing of biopsy samples obtained from a cohort of patients treated with the anti-IL-31 receptor inhibitor nemolizumab and taken at baseline and week 12. Generation and integration of patient data with RNA-Seq data generated from reconstructed human epidermis stimulated with IL-31 and other proinflammatory cytokines. RESULTS: Our results demonstrate that nemolizumab effectively decreases IL-31 responses in PN skin, leading to effective suppression of downstream inflammatory responses including TH2/IL-13 and TH17/IL-17 responses. This is accompanied by decreased keratinocyte proliferation and normalization of epidermal differentiation and function. Furthermore, our results demonstrate how transcriptomic changes associated with nemolizumab treatment correlate with improvement in lesions, pruritus, stabilization of extracellular matrix remodeling, and processes associated with cutaneous nerve function. CONCLUSION: These data demonstrate a broad response to IL-31 receptor inhibition with nemolizumab and confirm the critical upstream role of IL-31 in PN pathogenesis.


Assuntos
Prurigo , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Doença Crônica , Citocinas/uso terapêutico , Humanos , Prurigo/tratamento farmacológico , Prurigo/genética , Prurido/tratamento farmacológico , Prurido/genética , Transcriptoma
8.
Front Med (Lausanne) ; 8: 745822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746181

RESUMO

Background and Objectives: Trifarotene is a topical retinoid selective for retinoic acid receptor gamma that was recently approved for treatment of acne vulgaris. We performed a gene expression analysis to identify the molecular and cellular impact of trifarotene treatment on acne papules. Methods: In this open-label prospective study, subjects with moderate inflammatory acne of the back were treated with trifarotene 0.005% or vehicle cream on dedicated areas for 27 days, and 4 biopsies were collected from each subject (1 from skin without a visible acne lesion and three at the site of an acne papule: one baseline, one after vehicle treatment, and one after trifarotene treatment). Large scale gene expression profiling of the biopsies was performed using Affymetrix technology, treatment-specific gene expression profiles were generated using statistical modeling, and pathway analysis was performed. Using single-cell RNAseq data, in silico deconvolution of transcriptomics data was performed to identify cellular signatures. Results: We discovered a unique set of 67 genes modulated by trifarotene that are primarily involved in cellular migration, inflammation, and extracellular matrix reorganization. Changes in cellular expression were similar in both trifarotene-treated and spontaneously-resolving lesions. However, only trifarotene treatment impacted SPP1+ macrophages, a subset of highly proliferative macrophages recently identified in fibrotic tissue. Conclusions: These results show that trifarotene has a novel action in acne treatment by affecting epidermal and immune components of acne pathogenesis.

9.
PLoS One ; 15(12): e0243807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332401

RESUMO

Induced pluripotent stem cells (iPSC) offer the possibility to generate diverse disease-relevant cell types, from any genetic background with the use of cellular reprogramming and directed differentiation. This provides a powerful platform for disease modeling, drug screening and cell therapeutics. The critical question is how the differentiated iPSC-derived cells translate to their primary counterparts. Our refinement of a published differentiation protocol produces a CD14+ monocytic lineage at a higher yield, in a smaller format and at a lower cost. These iPSC-derived monocytes can be further differentiated into macrophages or dendritic cells (DC), both with similar morphological and functional profiles as compared to their primary counterparts. Transcriptomic analysis of iPSC-derived cells at different stages of differentiation as well as comparison to their blood-derived counterparts demonstrates a complete switch of iPSCs to cells expressing a monocyte, macrophage or DC specific gene profile. iPSC-derived macrophages respond to LPS treatment by inducing expression of classic macrophage pro-inflammatory response markers. Interestingly, though iPSC-derived DC show similarities to monocyte derived DC, they are more similar transcriptionally to a newly described subpopulation of AXL+ DC. Thus, our study provides a detailed and accurate profile of iPSC-derived monocytic lineage cells.


Assuntos
Células Dendríticas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Transcrição Gênica , Diferenciação Celular , Linhagem da Célula , Células Dendríticas/metabolismo , Humanos , Macrófagos/metabolismo
10.
Front Immunol ; 9: 2169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319629

RESUMO

T follicular helper (Tfh) cells are a specialized subset of CD4+ T cells that collaborate with B cells to promote and regulate humoral responses. Unlike other CD4+ effector lineages, Tfh cells require interactions with both dendritic cells (DCs) and B cells to complete their differentiation. While numerous studies have assessed the potential of different DC subsets to support Tfh priming, the conclusions of these studies depend heavily on the model and method of immunization used. We propose that the location of different DC subsets within the lymph node (LN) and their access to antigen determine their potency in Tfh priming. Finally, we provide a three-step model that accounts for the ability of multiple DC subsets and related lineages to support the Tfh differentiation program.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Linfonodos/citologia , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Apresentação de Antígeno , Humanos , Imunidade Humoral , Linfonodos/imunologia , Ativação Linfocitária
11.
Sci Immunol ; 2(18)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196450

RESUMO

T follicular helper (Tfh) cells are a subset of CD4+ T cells that promote antibody production during vaccination. Conventional dendritic cells (cDCs) efficiently prime Tfh cells; however, conclusions regarding which cDC instructs Tfh cell differentiation have differed between recent studies. We found that these discrepancies might exist because of the unusual sites used for immunization in murine models, which differentially bias which DC subsets access antigen. We used intranasal immunization as a physiologically relevant route of exposure that delivers antigen to all tissue DC subsets. Using a combination of mice in which the function of individual DC subsets is impaired and different antigen formulations, we determined that CD11b+ migratory type 2 cDCs (cDC2s) are necessary and sufficient for Tfh induction. DC-specific deletion of the guanine nucleotide exchange factor DOCK8 resulted in an isolated loss of CD11b+ cDC2, but not CD103+ cDC1, migration to lung-draining lymph nodes. Impaired cDC2 migration or development in DC-specific Dock8 or Irf4 knockout mice, respectively, led to reduced Tfh cell priming, whereas loss of CD103+ cDC1s in Batf3-/- mice did not. Loss of cDC2-dependent Tfh cell priming impaired antibody-mediated protection from live influenza virus challenge. We show that migratory cDC2s uniquely carry antigen into the subanatomic regions of the lymph node where Tfh cell priming occurs-the T-B border. This work identifies the DC subset responsible for Tfh cell-dependent antibody responses, particularly when antigen dose is limiting or is encountered at a mucosal site, which could ultimately inform the formulation and delivery of vaccines.


Assuntos
Anticorpos/imunologia , Antígeno CD11b/imunologia , Células Dendríticas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Proliferação de Células , Células Dendríticas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Repressoras/deficiência , Proteínas Repressoras/imunologia , Linfócitos T Auxiliares-Indutores/citologia
12.
Cell Rep ; 16(9): 2472-85, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27545885

RESUMO

Evidence suggests that distinct splenic dendritic cell (DC) subsets activate either CD4+ or CD8+ T cells in vivo. This bias has been partially ascribed to differential antigen presentation; however, all DC subsets can activate both T cell lineages in vitro. Therefore, we tested whether the organization of DC and T cell subsets in the spleen dictated this preference. We discovered that CD4+ and CD8+ T cells segregated within splenic T cell zones prior to immunization. After intravenous immunization, the two major conventional DC populations, distinguished by 33D1 and XCR1 staining, migrated into separate regions of the T cell zone: 33D1+ DCs migrated into the CD4+ T cell area, whereas XCR1+ DCs migrated into the CD8+ T cell area. Thus, the post-immunization location of each DC subset correlated with the T cell lineage it preferentially primes. Preventing this co-localization selectively impaired either CD4+ or CD8+ T cell immunity to blood-borne antigens.


Assuntos
Imunidade Adaptativa , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/classificação , Baço/imunologia , Animais , Antígenos/administração & dosagem , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Movimento Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Transfusão de Eritrócitos , Expressão Gênica , Imunização , Imunofenotipagem , Isoanticorpos/biossíntese , Lipopolissacarídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Baço/citologia
13.
J Exp Med ; 213(6): 887-96, 2016 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-27185856

RESUMO

Red blood cell (RBC) transfusion is a life-saving therapeutic tool. However, a major complication in transfusion recipients is the generation of antibodies against non-ABO alloantigens on donor RBCs, potentially resulting in hemolysis and renal failure. Long-lived antibody responses typically require CD4(+) T cell help and, in murine transfusion models, alloimmunization requires a spleen. Yet, it is not known how RBC-derived antigens are presented to naive T cells in the spleen. We sought to answer whether splenic dendritic cells (DCs) were essential for T cell priming to RBC alloantigens. Transient deletion of conventional DCs at the time of transfusion or splenic DC preactivation before RBC transfusion abrogated T and B cell responses to allogeneic RBCs, even though transfused RBCs persisted in the circulation for weeks. Although all splenic DCs phagocytosed RBCs and activated RBC-specific CD4(+) T cells in vitro, only bridging channel 33D1(+) DCs were required for alloimmunization in vivo. In contrast, deletion of XCR1(+)CD8(+) DCs did not alter the immune response to RBCs. Our work suggests that blocking the function of one DC subset during a narrow window of time during RBC transfusion could potentially prevent the detrimental immune response that occurs in patients who require lifelong RBC transfusion support.


Assuntos
Sistema ABO de Grupos Sanguíneos/imunologia , Linfócitos B/imunologia , Células Dendríticas/imunologia , Transfusão de Eritrócitos , Galactosiltransferases/imunologia , Fagocitose/imunologia , Baço/imunologia , Linfócitos T/imunologia , Sistema ABO de Grupos Sanguíneos/genética , Animais , Linfócitos B/patologia , Galactosiltransferases/genética , Camundongos , Camundongos Transgênicos , Baço/patologia , Linfócitos T/patologia
14.
Proc Natl Acad Sci U S A ; 112(10): 3056-61, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713392

RESUMO

Dendritic cells (DCs) are the primary leukocytes responsible for priming T cells. To find and activate naïve T cells, DCs must migrate to lymph nodes, yet the cellular programs responsible for this key step remain unclear. DC migration to lymph nodes and the subsequent T-cell response are disrupted in a mouse we recently described lacking the NOD-like receptor NLRP10 (NLR family, pyrin domain containing 10); however, the mechanism by which this pattern recognition receptor governs DC migration remained unknown. Using a proteomic approach, we discovered that DCs from Nlrp10 knockout mice lack the guanine nucleotide exchange factor DOCK8 (dedicator of cytokinesis 8), which regulates cytoskeleton dynamics in multiple leukocyte populations; in humans, loss-of-function mutations in Dock8 result in severe immunodeficiency. Surprisingly, Nlrp10 knockout mice crossed to other backgrounds had normal DOCK8 expression. This suggested that the original Nlrp10 knockout strain harbored an unexpected mutation in Dock8, which was confirmed using whole-exome sequencing. Consistent with our original report, NLRP3 inflammasome activation remained unaltered in NLRP10-deficient DCs even after restoring DOCK8 function; however, these DCs recovered the ability to migrate. Isolated loss of DOCK8 via targeted deletion confirmed its absolute requirement for DC migration. Because mutations in Dock genes have been discovered in other mouse lines, we analyzed the diversity of Dock8 across different murine strains and found that C3H/HeJ mice also harbor a Dock8 mutation that partially impairs DC migration. We conclude that DOCK8 is an important regulator of DC migration during an immune response and is prone to mutations that disrupt its crucial function.


Assuntos
Proteínas de Transporte/fisiologia , Movimento Celular/genética , Células Dendríticas/imunologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Mutação Puntual
16.
Trends Immunol ; 34(5): 224-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23352728

RESUMO

Innate instruction of adaptive immunity was proposed more than 20 years ago as a mechanism by which long-lived lymphocyte responses are targeted to appropriate antigens. At the time Charles Janeway proposed this theory, most of the innate immune receptors were unknown, and the pivotal role of the dendritic cell in instructing T cell priming was debated. There is now overwhelming evidence that the innate and adaptive branches of the immune system must interact to generate immunity. Much of this work has focused on families of innate immune receptors called pattern recognition receptors (PRRs) on dendritic cells, which translate these inflammatory triggers into productive T cell responses. Nevertheless, we are only beginning to understand how these defence molecules shape the generation of immunity. We review the varied roles of one class of PRRs, the NOD-like receptors (NLRs), in immune responses and propose a new model in which adaptive immunity requires coordinated PRR activation within the dendritic cell.


Assuntos
Células Dendríticas/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Ativação Linfocitária
17.
PLoS One ; 7(10): e47102, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071726

RESUMO

Regulatory T cells (Tregs) play a non-redundant role in maintenance of immune homeostasis. This is achieved by suppressing both, priming of naïve cells and effector cell functions. Although Tregs have been implicated in modulating allergic immune responses, their influence on distinct phases of development of allergies remains unclear. In this study, by using bacterial artificial chromosome (BAC)-transgenic Foxp3-DTR (DEREG) mice we demonstrate that the absence of Foxp3(+) Tregs during the allergen challenge surprisingly does not exacerbate allergic airway inflammation in BALB/c mice. As genetic disposition due to strain specificity may contribute significantly to development of allergies, we performed similar experiment in C57BL/6 mice, which are less susceptible to allergy in the model of sensitization used in this study. We report that the genetic background does not influence the consequence of this depletion regimen. These results signify the temporal regulation exerted by Foxp3(+) Tregs in limiting allergic airway inflammation and may influence their application as potential therapeutics.


Assuntos
Fatores de Transcrição Forkhead/genética , Inflamação/imunologia , Hipersensibilidade Respiratória/imunologia , Linfócitos T Reguladores/imunologia , Animais , Cromossomos Artificiais Bacterianos , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Predisposição Genética para Doença , Inflamação/genética , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/imunologia , Ovalbumina/toxicidade , Linfócitos T Reguladores/metabolismo
18.
Am J Respir Cell Mol Biol ; 47(6): 852-63, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22962064

RESUMO

Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.


Assuntos
Alérgenos/imunologia , Eosinofilia/imunologia , Lipopeptídeos/farmacologia , Ovalbumina/imunologia , Polietilenoglicóis/farmacologia , Células Th2/imunologia , Receptor 2 Toll-Like/agonistas , Animais , Apresentação de Antígeno , Proliferação de Células , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/fisiologia , Eosinofilia/patologia , Feminino , Interferon gama/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Hipersensibilidade Respiratória/imunologia , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Células Th1/imunologia , Células Th2/metabolismo , Células Th2/fisiologia , Receptor 2 Toll-Like/metabolismo , Receptor 6 Toll-Like/agonistas , Receptor 6 Toll-Like/metabolismo
19.
Exp Biol Med (Maywood) ; 236(11): 1291-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21987830

RESUMO

Dendritic cells (DCs) are essential for the generation and modulation of cell-mediated adaptive immunity against infections. DC-based vaccination involves transplantation of ex vivo-generated DCs loaded with antigen in vitro, but remains limited by the number of autologous or allogeneic cells. While in vitro expansion and differentiation of hematopoietic stem cells (HSCs) into DCs seems to be the most viable alternative to overcome this problem, the complexity of HSC expansion in vitro has posed significant limitations for clinical application. We immortalized lineage-depleted murine hematopoietic bone marrow (lin(-)BM) cells with HOXB4, and differentiated them into CD11c(+)MHCII(+) DCs. These cells showed the typical DC phenotype and upregulated surface expression of co-stimulatory molecules on stimulation with various toll-like receptor ligands. These DCs efficiently presented exogenous antigen to T-cells via major histocompatibility complex (MHC) I and II and viral antigen on infection. Finally, they showed migratory capacity and were able to generate antigen-specific primed T-cells in vivo. In summary, we provide evidence that HOXB4-transduced lin(-)BM cells can serve as a viable means of generating fully functional DCs for scientific and therapeutic applications.


Assuntos
Células Dendríticas/citologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/farmacologia , Fatores de Transcrição/farmacologia , Animais , Apresentação de Antígeno , Técnicas de Cultura de Células , Diferenciação Celular , Movimento Celular , Células Dendríticas/imunologia , Humanos , Imunidade Celular , Ligantes , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Fenótipo , Linfócitos T/fisiologia , Receptores Toll-Like/metabolismo
20.
Eur J Immunol ; 40(8): 2259-66, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20544727

RESUMO

Recent studies highlight the role of Treg in preventing unnecessary responses to allergens and maintaining functional immune tolerance in the lung. We investigated the role of Treg during the sensitization phase in a murine model of experimental allergic airway inflammation by selectively depleting the Treg population in vivo. DEpletion of REGulatory T cells (DEREG) mice were depleted of Treg by diphtheria toxin injection. Allergic airway inflammation was induced using OVA as a model allergen. Pathology was assessed by scoring for differential cellular infiltration in bronchoalveolar lavage, IgE and IgG1 levels in serum, cytokine secretion analysis of lymphocytes from lung draining lymph nodes and lung histology. Use of DEREG mice allowed us for the first time to track and specifically deplete both CD25(+) and CD25(-) Foxp3(+) Treg, and to analyze their significance in limiting pathology in allergic airway inflammation. We observed that depletion of Treg during the priming phase of an active immune response led to a dramatic exacerbation of allergic airway inflammation in mice, suggesting an essential role played by Treg in regulating immune responses against allergens as early as the sensitization phase via maintenance of functional tolerance.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Pulmão/patologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Alérgenos/administração & dosagem , Alérgenos/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/biossíntese , Hipersensibilidade/sangue , Imunização , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...