Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38772707

RESUMO

A majority of cancer research is focused on defining the cellular and molecular basis of cancer cells and the signals that control oncogenic transformation; as a consequence, we know very little about the dynamic behavior of cancer cells in vivo. To begin to view and understand the mechanisms and interactions that control cancer initiation, growth, and metastatic progression and how these processes are influenced by the microenvironment and the signals derived from it, it is essential to develop strategies that allow imaging of the cancer cells in the context of the living microenvironment. Here, we discuss emerging work designed to visualize how cancer cells function within the microenvironment to discover how these interactions act coordinately to enable aberrant growth and to understand how they could be targeted to design new approaches to intercept the disease.

2.
Cancer Cell ; 41(11): 1989-2005.e9, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37802055

RESUMO

Identifying the cells from which cancers arise is critical for understanding the molecular underpinnings of tumor evolution. To determine whether stem/progenitor cells can serve as cells of origin, we created a Msi2-CreERT2 knock-in mouse. When crossed to CAG-LSL-MycT58A mice, Msi2-CreERT2 mice developed multiple pancreatic cancer subtypes: ductal, acinar, adenosquamous, and rare anaplastic tumors. Combining single-cell genomics with computational analysis of developmental states and lineage trajectories, we demonstrate that MYC preferentially triggers transformation of the most immature MSI2+ pancreas cells into multi-lineage pre-cancer cells. These pre-cancer cells subsequently diverge to establish pancreatic cancer subtypes by activating distinct transcriptional programs and large-scale genomic changes, and enforced expression of specific signals like Ras can redirect subtype specification. This study shows that multiple pancreatic cancer subtypes can arise from a common pool of MSI2+ cells and provides a powerful model to understand and control the programs that shape divergent fates in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia
3.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234720

RESUMO

Myeloid leukemias, diseases marked by aggressiveness and poor outcomes, are frequently triggered by oncogenic translocations. In the case of chronic myelogenous leukemia (CML) the BCR-ABL fusion initiates chronic phase disease with second hits allowing progression to blast crisis. Although Gleevec has been transformative for CML, blast crisis CML remains relatively drug resistant. Here we show that MSI2-HOXA9, a translocation with an unknown role in cancer, can serve as a second hit in driving bcCML. Compared to BCR-ABL, BCR-ABL/MSI2-HOXA9 led to a more aggressive disease in vivo with decreased latency, increased lethality and a differentiation blockade that is a hallmark of blast crisis. Domain mapping revealed that the MSI2 RNA binding domain RRM1 had a preferential impact on growth and lethality of bcCML relative to RRM2 or the HOXA9 domain. Mechanistically, MSI2-HOXA9 triggered global downstream changes with a preferential upregulation of mitochondrial components. Consistent with this, BCR-ABL/MSI2-HOXA9 cells exhibited a significant increase in mitochondrial respiration. These data suggest that MSI2-HOXA9 acts, at least in part, by increasing expression of the mitochondrial polymerase Polrmt and augmenting mitochondrial function and basal respiration in blast crisis. Collectively, our findings demonstrate for the first time that translocations involving the stem and developmental signal MSI2 can be oncogenic, and suggest that MSI, which we found to be a frequent partner for an array of translocations, could also be a driver mutation across solid cancers.

4.
Nat Commun ; 11(1): 5998, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243988

RESUMO

Intratumoral heterogeneity is a common feature of many myeloid leukemias and a significant reason for treatment failure and relapse. Thus, identifying the cells responsible for residual disease and leukemia re-growth is critical to better understanding how they are regulated. Here, we show that a knock-in reporter mouse for the stem cell gene Musashi 2 (Msi2) allows identification of leukemia stem cells in aggressive myeloid malignancies, and provides a strategy for defining their core dependencies. Specifically, we carry out a high throughput screen using Msi2-reporter blast crisis chronic myeloid leukemia (bcCML) and identify several adhesion molecules that are preferentially expressed in therapy resistant bcCML cells and play a key role in bcCML. In particular, we focus on syndecan-1, whose deletion triggers defects in bcCML growth and propagation and markedly improves survival of transplanted mice. Further, live imaging reveals that the spatiotemporal dynamics of leukemia cells are critically dependent on syndecan signaling, as loss of this signal impairs their localization, migration and dissemination to distant sites. Finally, at a molecular level, syndecan loss directly impairs integrin ß7 function, suggesting that syndecan exerts its influence, at least in part, by coordinating integrin activity in bcCML. These data present a platform for delineating the biological underpinnings of leukemia stem cell function, and highlight the Sdc1-Itgß7 signaling axis as a key regulatory control point for bcCML growth and dissemination.


Assuntos
Crise Blástica/terapia , Leucemia Mieloide Aguda/terapia , Células-Tronco Neoplásicas/patologia , Proteínas de Ligação a RNA/genética , Sindecana-1/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Crise Blástica/genética , Crise Blástica/patologia , Quimiorradioterapia/métodos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Genes Reporter/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Ensaios de Triagem em Larga Escala , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Cadeias beta de Integrinas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos Transgênicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Sindecana-1/genética , Sindecana-1/metabolismo
5.
Cell ; 177(3): 572-586.e22, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30955884

RESUMO

Drug resistance and relapse remain key challenges in pancreatic cancer. Here, we have used RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and genome-wide CRISPR analysis to map the molecular dependencies of pancreatic cancer stem cells, highly therapy-resistant cells that preferentially drive tumorigenesis and progression. This integrated genomic approach revealed an unexpected utilization of immuno-regulatory signals by pancreatic cancer epithelial cells. In particular, the nuclear hormone receptor retinoic-acid-receptor-related orphan receptor gamma (RORγ), known to drive inflammation and T cell differentiation, was upregulated during pancreatic cancer progression, and its genetic or pharmacologic inhibition led to a striking defect in pancreatic cancer growth and a marked improvement in survival. Further, a large-scale retrospective analysis in patients revealed that RORγ expression may predict pancreatic cancer aggressiveness, as it positively correlated with advanced disease and metastasis. Collectively, these data identify an orthogonal co-option of immuno-regulatory signals by pancreatic cancer stem cells, suggesting that autoimmune drugs should be evaluated as novel treatment strategies for pancreatic cancer patients.


Assuntos
Adenocarcinoma/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Epigênese Genética , Biblioteca Gênica , Humanos , Camundongos , Camundongos Knockout , Camundongos SCID , Células-Tronco Neoplásicas/citologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-10/antagonistas & inibidores , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma , Células Tumorais Cultivadas
6.
Nature ; 534(7607): 407-411, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27281208

RESUMO

Pancreatic intraepithelial neoplasia is a pre-malignant lesion that can progress to pancreatic ductal adenocarcinoma, a highly lethal malignancy marked by its late stage at clinical presentation and profound drug resistance. The genomic alterations that commonly occur in pancreatic cancer include activation of KRAS2 and inactivation of p53 and SMAD4 (refs 2-4). So far, however, it has been challenging to target these pathways therapeutically; thus the search for other key mediators of pancreatic cancer growth remains an important endeavour. Here we show that the stem cell determinant Musashi (Msi) is a critical element of pancreatic cancer progression both in genetic models and in patient-derived xenografts. Specifically, we developed Msi reporter mice that allowed image-based tracking of stem cell signals within cancers, revealing that Msi expression rises as pancreatic intraepithelial neoplasia progresses to adenocarcinoma, and that Msi-expressing cells are key drivers of pancreatic cancer: they preferentially harbour the capacity to propagate adenocarcinoma, are enriched in circulating tumour cells, and are markedly drug resistant. This population could be effectively targeted by deletion of either Msi1 or Msi2, which led to a striking defect in the progression of pancreatic intraepithelial neoplasia to adenocarcinoma and an improvement in overall survival. Msi inhibition also blocked the growth of primary patient-derived tumours, suggesting that this signal is required for human disease. To define the translational potential of this work we developed antisense oligonucleotides against Msi; these showed reliable tumour penetration, uptake and target inhibition, and effectively blocked pancreatic cancer growth. Collectively, these studies highlight Msi reporters as a unique tool to identify therapy resistance, and define Msi signalling as a central regulator of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imagem Molecular , Proteínas do Tecido Nervoso/genética , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas de Ligação a RNA/genética , Animais , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Deleção de Genes , Genes Reporter/genética , Humanos , Masculino , Camundongos , Modelos Genéticos , Células Neoplásicas Circulantes/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/uso terapêutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Annu Rev Cell Dev Biol ; 31: 249-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26566113

RESUMO

How a single cell gives rise to an entire organism is one of biology's greatest mysteries. Within this process, stem cells play a key role by serving as seed cells capable of both self-renewal to sustain themselves as well as differentiation to generate the full diversity of mature cells and functional tissues. Understanding how this balance between self-renewal and differentiation is achieved is crucial to defining not only the underpinnings of normal development but also how its subversion can lead to cancer. Musashi, a family of RNA binding proteins discovered originally in Drosophila and named after the iconic samurai, Miyamoto Musashi, has emerged as a key signal that confers and protects the stem cell state across organisms. Here we explore the role of this signal in stem cells and how its reactivation can be a critical element in oncogenesis. Relative to long-established developmental signals such as Wnt, Hedgehog, and Notch, our understanding of Musashi remains in its infancy; yet all evidence suggests that Musashi will emerge as an equally powerful paradigm for regulating development and cancer and may be destined to have a great impact on biology and medicine.


Assuntos
Proteínas de Drosophila/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Carcinogênese/metabolismo , Drosophila/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-23378582

RESUMO

One of the most remarkable characteristics of stem cells is their ability to perpetuate themselves through self-renewal while concomitantly generating differentiated cells. In the hematopoietic system, stem cells balance these mechanisms to maintain steady-state hematopoiesis for the lifetime of the organism, and to effectively regenerate the system following injury. Defects in the proper control of self-renewal and differentiation can be potentially devastating and contribute to the development of malignancies. In this review, we trace the emerging role of Wnt signaling as a critical regulator of distinct aspects of self-renewal and differentiation, its contribution to the maintenance of homeostasis and regeneration, and how the pathway can be hijacked to promote leukemia development. A better understanding of these processes could pave the way to enhancing recovery after injury and to developing better therapeutic approaches for hematologic malignancies.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Leucemia/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Animais , Diferenciação Celular , Humanos , Linfócitos/metabolismo , Camundongos , Proteínas Wnt/genética , Proteínas Wnt/fisiologia , Xenopus
9.
Endocrine ; 37(2): 312-21, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20960269

RESUMO

The growth and renewal of epithelial tissue is a highly orchestrated and tightly regulated process occurring in different tissue types under a variety of circumstances. We have been studying the process of pancreatic regeneration in mice. We have identified a cell surface protein, named EP1, which is expressed on the duct epithelium during pancreatic regeneration. Whereas it is not detected in the pancreas of normal mice, it is found in the intestinal epithelium of normal adult mice, as well as during pancreatic repair following cerulein-induced destruction of the acinar tissue. The distinctive situations in which EP1 is expressed, all of which share in common epithelial cell growth in the gastrointestinal tract, suggest that EP1 is involved in the growth and renewal of epithelial tissues in both the intestine and the pancreas.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pâncreas/citologia , Pâncreas/fisiologia , Sequência de Aminoácidos , Animais , Diferenciação Celular/fisiologia , Quimiocina CXCL12/metabolismo , Intestinos/citologia , Intestinos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Mitose/fisiologia , Dados de Sequência Molecular , Receptores CXCR4/metabolismo , Regeneração/fisiologia
10.
Dev Dyn ; 237(5): 1255-67, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18393305

RESUMO

Nodal and its antagonist, Lefty, are important mediators specifying the laterality of the organs during embryogenesis. Nodal signals through activin receptors in the presence of its co-receptor, Cripto. In the present study, we investigated the possible roles of Nodal and Lefty signaling during islet development and regeneration. We found that both Nodal and Lefty are expressed in the pancreas during embryogenesis and islet regeneration. In vitro studies demonstrated that Nodal inhibits, whereas Lefty enhances, the proliferation of a pancreatic cell line. In addition, we showed that Lefty-1 activates MAPK and Akt phosphorylation in these cells. In vivo blockade of endogenous Lefty using neutralizing Lefty-1 monoclonal antibody results in a significantly decreased proliferation of duct epithelial cells during islet regeneration. This is the first study to decipher the expression and function of Nodal and Lefty in pancreatic growth. Importantly, our results highlight a novel function of Nodal-Lefty signaling in the regulation of expansion of pancreatic cells.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Ilhotas Pancreáticas , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Ativinas/metabolismo , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Ativação Enzimática , Interferon gama/genética , Interferon gama/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Fatores de Determinação Direita-Esquerda , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Nodal , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração , Fator de Crescimento Transformador beta/genética
11.
Diabetes ; 56(1): 96-106, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17192470

RESUMO

Fibroblast growth factors (FGFs) and their receptors (FGFRs) are key signaling molecules for pancreas development. Although FGFR3 is a crucial developmental gene, acting as a negative regulator of bone formation, its participation remains unexplored in pancreatic organogenesis. We found that FGFR3 was expressed in the epithelia in both mouse embryonic and adult regenerating pancreata but was absent in normal adult islets. In FGFR3 knockout mice, we observed an increase in the proliferation of epithelial cells in neonates, leading to a marked increase in islet areas in adults. In vitro studies showed that FGF9 is a very potent ligand for FGFR3 and activates extracellular signal-related kinases (ERKs) in pancreatic cell lines. Moreover, FGFR3 blockade or FGFR3 deficiency led to increased proliferation of pancreatic epithelial cells in vivo. This was accompanied by an increase in the proportion of potential islet progenitor cells. Thus, our results show that FGFR3 signaling inhibits the expansion of the immature pancreatic epithelium. Consequently, this study suggests that FGFR3 participates in regulating pancreatic growth during the emergence of mature islet cells.


Assuntos
Células Epiteliais/citologia , Ilhotas Pancreáticas/fisiologia , Pâncreas/citologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Envelhecimento , Animais , Animais Recém-Nascidos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Pâncreas/embriologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Regeneração , Transdução de Sinais/fisiologia
12.
Endocrine ; 30(1): 103-12, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17185798

RESUMO

Gut peptide YY (PYY) plays an important role in regulating metabolism and is expressed during the ontogeny of the pancreas. However, its biological role during endocrine cell formation is not fully understood, and its role, if any, during pancreatic regeneration in the adult has not yet been explored. The knowledge of factors involved in beta cell renewal in adult animals is clearly relevant for the design of treatment strategies for type 1 diabetes. We therefore sought to determine if observations during fetal pancreas formation also apply to pancreatic growth in adult animals. Indeed, we have found marked expansion of the PYY-expressing population during pancreatic regeneration. In addition, we demonstrate the presence of cells co-expressing PYY and the critical pancreatic transcription factor pancreatic duodenal homeobox1 (PDX-1). Interestingly, these cells also co-expressed specific islet hormones during pancreatic development and re-growth, suggesting a developmental relationship. Furthermore, we have found that PYY can act in concert with IGF-1 to stimulate cellular responsiveness in pancreatic epithelial cells in vitro. Our data suggest that PYY may be a mediator of islet cell development, as well as a cofactor for growth factor responses, not only during fetal pancreas formation but also during regeneration in adult animals.


Assuntos
Pâncreas/fisiologia , Peptídeo YY/fisiologia , Regeneração/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/fisiologia , Interferon gama/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Pâncreas/embriologia , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Peptídeo YY/genética , Peptídeo YY/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores dos Hormônios Gastrointestinais/biossíntese , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Biol Chem ; 281(19): 13574-13580, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16547003

RESUMO

Inhibitor of DNA binding (Id) proteins bind to and inhibit the function of basic helix-loop-helix (bHLH) transcription factors including those that regulate pancreatic development. Moreover, bone morphogenetic proteins (BMPs) regulate the expression of Ids. We hypothesized that BMP4 and Id proteins play a role in the expansion and differentiation of epithelial progenitor cells. We demonstrate that BMP4 induces the expression of Id2 along with the expansion of AR42J pancreatic epithelial cells. Furthermore, neutralization of BMP4 significantly reduced duct epithelial cell expansion in a mouse model of islet regeneration. BMP4 stimulation promotes Id2 binding to the bHLH transcription factor NeuroD, which is required for the differentiation of pancreatic islet cells. Therefore, our results indicate that BMP4 stimulation blocks the differentiation of endocrine progenitor cells and instead promotes their expansion thereby revealing a novel paradigm of signaling explaining the balance between expansion and differentiation of pancreatic duct epithelial progenitors. Understanding the mechanisms of BMP and Id function elucidates a key step during pancreas embryogenesis, which is important knowledge for expanding pancreatic progenitors in vitro.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteína 2 Inibidora de Diferenciação/metabolismo , Células Secretoras de Insulina/metabolismo , Células-Tronco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteína 2 Inibidora de Diferenciação/genética , Leucemia Plasmocitária , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/crescimento & desenvolvimento , Ductos Pancreáticos/citologia , Ductos Pancreáticos/crescimento & desenvolvimento , Transdução de Sinais
14.
J Cell Mol Med ; 9(2): 331-44, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15963253

RESUMO

Pancreatic islet transplantation represents an attractive approach for the treatment of diabetes. However, the limited availability of donor islets has largely hampered this approach. In this respect, the use of alternative sources of islets such as the ex vivo expansion and differentiation of functional endocrine cells for treating diabetes has become the major focus of diabetes research. Adult pancreatic stem cells /progenitor cells have yet to be recognized because limited markers exist for their identification. While the pancreas has the capacity to regenerate under certain circumstances, questions where adult pancreatic stem/progenitor cells are localized, how they are regulated, and even if the pancreas harbors a stem cell population need to be resolved. In this article, we review the recent achievements both in the identification as well as in the expansion of pancreatic stem/progenitor cells.


Assuntos
Proliferação de Células , Pâncreas/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Embrião de Mamíferos/citologia , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Modelos Biológicos , Pâncreas/fisiologia , Ductos Pancreáticos/citologia , Ductos Pancreáticos/metabolismo , Regeneração/fisiologia , Células-Tronco/fisiologia
15.
Diabetes ; 53(8): 2024-33, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15277382

RESUMO

Activins regulate the growth and differentiation of a variety of cells. During pancreatic islet development, activins are required for the specialization of pancreatic precursors from the gut endoderm during midgestation. In this study, we probed the role of activin signaling during pancreatic islet cell development and regeneration. Indeed, we found that both activins and activin receptors are upregulated in duct epithelial cells during islet differentiation. Interestingly, the expression of endogenous cellular inhibitors of activin signaling, follistatin and Cripto, were also found to be augmented. Inhibition of activins significantly enhanced survival and expansion of pancreatic epithelial cells but decreased the numbers of differentiated beta-cells. Our results suggest that the homeostasis of growth and terminal differentiation requires a precise context-dependent regulation of activin signaling. Follistatin participates in this process by promoting expansion of precursor cells during pancreas growth.


Assuntos
Ativinas/fisiologia , Células Epiteliais/citologia , Ilhotas Pancreáticas/fisiologia , Pâncreas/citologia , Receptores de Ativinas/fisiologia , Ativinas/antagonistas & inibidores , Ativinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Células Epiteliais/efeitos dos fármacos , Folistatina/farmacologia , Humanos , Interferon gama/genética , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteínas Recombinantes/farmacologia
16.
J Cell Biol ; 163(4): 859-69, 2003 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-14638861

RESUMO

The SDF-1alpha/CXCR4 ligand/chemokine receptor pair is required for appropriate patterning during ontogeny and stimulates the growth and differentiation of critical cell types. Here, we demonstrate SDF-1alpha and CXCR4 expression in fetal pancreas. We have found that SDF-1alpha and its receptor CXCR4 are expressed in islets, also CXCR4 is expressed in and around the proliferating duct epithelium of the regenerating pancreas of the interferon (IFN) gamma-nonobese diabetic mouse. We show that SDF-1alpha stimulates the phosphorylation of Akt, mitogen-activated protein kinase, and Src in pancreatic duct cells. Furthermore, migration assays indicate a stimulatory effect of SDF-1alpha on ductal cell migration. Importantly, blocking the SDF-1alpha/CXCR4 axis in IFNgamma-nonobese diabetic mice resulted in diminished proliferation and increased apoptosis in the pancreatic ductal cells. Together, these data indicate that the SDF-1alpha-CXCR4 ligand receptor axis is an obligatory component in the maintenance of duct cell survival, proliferation, and migration during pancreatic regeneration.


Assuntos
Quimiocinas CXC/metabolismo , Pâncreas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases , Receptores CXCR4/metabolismo , Células-Tronco/metabolismo , Animais , Apoptose/fisiologia , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Quimiocina CXCL12 , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feto , Ligantes , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Ductos Pancreáticos/citologia , Ductos Pancreáticos/crescimento & desenvolvimento , Ductos Pancreáticos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Regeneração/fisiologia , Células-Tronco/citologia , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...