Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vopr Pitan ; 89(5): 110-118, 2020.
Artigo em Russo | MEDLINE | ID: mdl-33211923

RESUMO

In the process of grain processing for ethyl alcohol, practically only carbohydrates are consumed, which are presented mainly in the form of starch. The remaining components (protein, fats, fiber, minerals) in transit pass into the grain fiber remaining after distillation of the alcohol from the mash. Distillery grain fiber surpasses wheat bran in its indicators, since during the processing it is enriched with biomass of alcohol yeast. In addition, there is a technological possibility of its additional enrichment with protein, amino acids, and vitamins due to changes in the modes of alcoholic fermentation. The aim of the work was to assess the influence of the mode and conditions of alcoholic fermentation on the composition of distillery grain fiber. Material and methods. Under laboratory conditions, samples of grain fiber of alcohol production were obtained by the method of fermentation samples from wheat under various fermentation conditions. In the obtained samples, the following parameters were determined: protein according to Barnstein, crude protein, vitamins B1, B2, B6, E, as well as the amino acid composition. The volume fraction of ethyl alcohol, the mass concentration of fermentable carbohydrates, and the concentration of yeast cells were determined in intermediate products of alcohol production. Results and discussion. Studies on the effect of yeast from various manufacturers on fermentation rates, biomass growth and grain fiber composition showed the advantage of race Y-717 in terms of alcohol accumulation (11.5% vol.), Fermentation rate (56 hours) and yeast cell concentration (260 million/cm3), which was 15-30% more than in other options. However, from the point of view of increasing the content of protein according to Barnstein and crude protein in samples of grain fiber with yeast Y-717, an increase of only 3-4% was noted compared with other options. This was associated with a decrease in the concentration of yeast by 72 h of fermentation due to autolysis. Studies on the influence of the initial yeast concentration on the growth of biomass, the fermentation rate and grain fiber indices showed that with an increase in the initial yeast concentration from 15 to 45 million/cm3, the fermentation time reduced to 48 h, the biomass growth at the end of fermentation was 20%, the protein in grain fiber increased by 15%, the content of vitamins B1, B2, B6 and E as well as amino acids increased by 13-17%. Conclusion. According to the results of the studies, the technological possibility of enriching distillery grain fiber with protein, amino acids, and vitamins due to a change in the fermentation process during the processing of grain raw materials to alcohol is shown. In particular, this could be achieved through the use of yeast with a high growth rate, by increasing the concentration of yeast biomass, shortening the fermentation period and preventing yeast autolysis at the maturation stage.


Assuntos
Fibras na Dieta , Tecnologia de Alimentos , Valor Nutritivo , Proteínas de Vegetais Comestíveis , Saccharomyces cerevisiae/crescimento & desenvolvimento , Triticum
2.
Phys Chem Chem Phys ; 18(17): 12344-9, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27086716

RESUMO

We observed that thermally treated carbon nanowalls serve efficiently as templates governing the formation of quasiperiodic patterns for nanoparticles deposited. Here we report self-assembled quasi-regular structures of diverse nanoparticles on a freestanding multilayer graphene-like material, i.e. carbon nanowalls. Metallic (Ag, Al, Co, Mo, Ni, and Ta) and semiconductor (Si) nanoparticles form coaxial polygonal closed loop structures or parallel equidistant rows, which evolve upon further deposition into bead-like structures and, finally, into nanowires. Weakly bonded nanoparticles decorate atomic steps, wrinkles and other extended defects on the carbon nanowalls as a result of anisotropic diffusion of atoms or clusters along the hexagonal sp(2)-carbon network followed by their aggregation and agglomeration. The decorated carbon nanowalls are found to be promising materials for surface enhanced Raman scattering (SERS) analysis.

3.
Sci Rep ; 3: 3328, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24270355

RESUMO

The optical properties of carbon nanowall (CNW) films in the visible range have been studied and reported for the first time. Depending on the film structure, ultra-low total reflectance up to 0.13% can be reached, which makes the CNW films a promising candidate for the black body-like coating, and thus for a wide range of applications as a light absorber. We have estimated important trends in the optical property variation from sample to sample, and identified the presence of edge states and domain boundaries in carbon nanowalls as well as the film mass density variation as the key factors. Also we demonstrated that at much lower film thickness and density than for a carbon nanotube forest the CNWs yield one order higher specific light absorption.

4.
J Nanosci Nanotechnol ; 11(10): 8912-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400280

RESUMO

New method for nucleation of different nanocrystalline carbon films upon monocrystalline Si substrate was proposed. The process is based on a combination of microwave and radio frequency plasma assisted chemical vapor deposition methods. Potential of the method for nucleation was demonstrated by deposition of nanocrystalline diamond film in pure microwave plasma in one process, immediately after "seeding" procedure. The method was also used for growth of nanocrystalline graphite (NCG) films, which are currently under intensive investigation due to their exceptional electronic properties, particularly fine electron emission characteristics. Deposited NCG films have demonstrated remarkable electron field emission properties having current density of up to 10 A/cm2. The films have also possessed good adhesion to silicon substrate. Carbon films and nucleation layer were characterized by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...