Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(10): 1738-1753, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37606258

RESUMO

The complex immunopathology ofMycobacterium tuberculosis(Mtb) is one of the main challenges in developing a novel vaccine against this pathogen, particularly regarding eliciting protection against both active and latent stages. Multistage vaccines, which contain antigens expressed in both phases, represent a promising strategy for addressing this issue, as testified by the tuberculosis vaccine clinical pipeline. Given this approach, we designed and characterized a multistage peptide-based vaccine platform containing CD4+ and CD8+ T cell epitopes previously validated for inducing a relevant T cell response against Mtb. After preliminary screening, CFP10 (32-39), GlfT2 (4-12), HBHA (185-194), and PPE15 (1-15) were selected as promising candidates, and we proved that the PM1 pool of these peptides triggered a T cell response in Mtb-sensitized human peripheral blood mononuclear cells (PBMCs). Taking advantage of the use of thiol-maleimide chemoselective ligation, we synthesized a multiepitope conjugate (Ac-CGHP). Our results showed a structure-activity relationship between the conjugation and a higher tendency to fold and assume an ordered secondary structure. Moreover, the palmitoylated conjugate (Pal-CGHP) comprising the same peptide antigens was associated with an enhanced cellular uptake in human and murine antigen-presenting cells and a better immunogenicity profile. Immunization study, conducted in BALB/c mice, showed that Pal-CGHP induced a significantly higher T cell proliferation and production of IFNγ and TNFα over PM1 formulated in the Sigma Adjuvant System.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Humanos , Animais , Camundongos , Leucócitos Mononucleares , Antígenos de Bactérias , Linfócitos T CD4-Positivos , Tuberculose/prevenção & controle , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Peptídeos
2.
Nat Commun ; 14(1): 1286, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890174

RESUMO

Ca2+ release-activated Ca2+ (CRAC) channels, indispensable for the immune system and various other human body functions, consist of two transmembrane (TM) proteins, the Ca2+-sensor STIM1 in the ER membrane and the Ca2+ ion channel Orai1 in the plasma membrane. Here we employ genetic code expansion in mammalian cell lines to incorporate the photocrosslinking unnatural amino acids (UAA), p-benzoyl-L-phenylalanine (Bpa) and p-azido-L-phenylalanine (Azi), into the Orai1 TM domains at different sites. Characterization of the respective UAA-containing Orai1 mutants using Ca2+ imaging and electrophysiology reveal that exposure to UV light triggers a range of effects depending on the UAA and its site of incorporation. In particular, photoactivation at A137 using Bpa in Orai1 activates Ca2+ currents that best match the biophysical properties of CRAC channels and are capable of triggering downstream signaling pathways such as nuclear factor of activated T-cells (NFAT) translocation into the nucleus without the need for the physiological activator STIM1.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Animais , Humanos , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Mamíferos/metabolismo , Proteínas de Neoplasias/metabolismo
3.
Biomolecules ; 12(6)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35740924

RESUMO

Azobenzene-based photochromic lipids are valuable probes for the analysis of ion channel-lipid interactions. Rapid photoisomerization of these molecules enables the analysis of lipid gating kinetics and provides information on lipid sensing. Thermal relaxation of the metastable cis conformation to the trans conformation of azobenzene photolipids is rather slow in the dark and may be modified by ligand-protein interactions. Cis photolipid-induced changes in pure lipid membranes as visualized from the morphological response of giant unilamellar vesicles indicated that thermal cis-trans isomerization of both PhoDAG-1 and OptoDArG is essentially slow in the lipid bilayer environment. While the currents activated by cis PhoDAG remained stable upon termination of UV light exposure (dark, UV-OFF), cis OptoDArG-induced TRPC3/6/7 activity displayed a striking isoform-dependent exponential decay. The deactivation kinetics of cis OptoDArG-induced currents in the dark was sensitive to mutations in the L2 lipid coordination site of TRPC channels. We conclude that the binding of cis OptoDArG to TRPC channels promotes transition of cis OptoDArG to the trans conformation. This process is suggested to provide valuable information on DAG-ion channel interactions and may enable highly selective photopharmacological interventions.


Assuntos
Bicamadas Lipídicas , Lipossomas Unilamelares , Canais Iônicos , Isomerismo , Cinética , Bicamadas Lipídicas/química
4.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944977

RESUMO

The interplay of SK3, a Ca2+ sensitive K+ ion channel, with Orai1, a Ca2+ ion channel, has been reported to increase cytosolic Ca2+ levels, thereby triggering proliferation of breast and colon cancer cells, although a molecular mechanism has remained elusive to date. We show in the current study, via heterologous protein expression, that Orai1 can enhance SK3 K+ currents, in addition to constitutively bound calmodulin (CaM). At low cytosolic Ca2+ levels that decrease SK3 K+ permeation, co-expressed Orai1 potentiates SK3 currents. This positive feedback mechanism of SK3 and Orai1 is enabled by their close co-localization. Remarkably, we discovered that loss of SK3 channel activity due to overexpressed CaM mutants could be restored by Orai1, likely via its interplay with the SK3-CaM binding site. Mapping for interaction sites within Orai1, we identified that the cytosolic strands and pore residues are critical for a functional communication with SK3. Moreover, STIM1 has a bimodal role in SK3-Orai1 regulation. Under physiological ionic conditions, STIM1 is able to impede SK3-Orai1 interplay by significantly decreasing their co-localization. Forced STIM1-Orai1 activity and associated Ca2+ influx promote SK3 K+ currents. The dynamic regulation of Orai1 to boost endogenous SK3 channels was also determined in the human prostate cancer cell line LNCaP.

5.
Sensors (Basel) ; 20(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517055

RESUMO

The development of sensing coatings, as important sensor elements that integrate functionality, simplicity, chemical stability, and physical stability, has been shown to play a major role in electrochemical sensing system development trends. Simple and versatile assembling procedures and scalability make polyelectrolytes highly convenient for use in electrochemical sensing applications. Polyelectrolytes are mainly used in electrochemical sensor architectures for entrapping (incorporation, immobilization, etc.) various materials into sensing layers. These materials can often increase sensitivity, selectivity, and electronic communications with the electrode substrate, and they can mediate electron transfer between an analyte and transducer. Analytical performance can be significantly improved by the synergistic effect of materials (sensing material, transducer, and mediator) present in these composites. As most reported methods for the preparation of polyelectrolyte-based sensing layers are layer-by-layer and casting/coating methods, this review focuses on the use of the latter methods in the development of electrochemical sensors within the last decade. In contrast to many reviews related to electrochemical sensors that feature polyelectrolytes, this review is focused on architectures of sensing layers and the role of polyelectrolytes in the development of sensing systems. Additionally, the role of polyelectrolytes in the preparation and modification of various nanoparticles, nanoprobes, reporter probes, nanobeads, etc. that are used in electrochemical sensing systems is also reviewed.

6.
Cells ; 9(3)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120825

RESUMO

Canonical transient receptor potential (TRPC) channels were identified as key players in maladaptive remodeling, with nuclear factor of activated T-cells (NFAT) transcription factors serving as downstream targets of TRPC-triggered Ca2+ entry in these pathological processes. Strikingly, the reconstitution of TRPC-NFAT signaling by heterologous expression yielded controversial results. Specifically, nuclear translocation of NFAT1 was found barely responsive to recombinant TRPC3, presumably based on the requirement of certain spatiotemporal signaling features. Here, we report efficient control of NFAT1 nuclear translocation in human embryonic kidney 293 (HEK293) cells by light, using a new photochromic TRPC benzimidazole activator (OptoBI-1) and a TRPC3 mutant with modified activator sensitivity. NFAT1 nuclear translocation was measured along with an all-optical protocol to record local and global Ca2+ pattern generated during light-mediated activation/deactivation cycling of TRPC3. Our results unveil the ability of wild-type TRPC3 to produce constitutive NFAT nuclear translocation. Moreover, we demonstrate that TRPC3 mutant that lacks basal activity enables spatiotemporally precise control over NFAT1 activity by photopharmacology. Our results suggest tight linkage between TRPC3 activity and NFAT1 nuclear translocation based on global cellular Ca2+ signals.


Assuntos
Luz , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Sinalização do Cálcio , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Isomerismo , Optogenética , Transporte Proteico , Transdução de Sinais/efeitos da radiação , Fatores de Tempo
7.
Front Immunol ; 11: 613194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391284

RESUMO

Canonical transient receptor potential (TRPC) channels are considered as elements of the immune cell Ca2+ handling machinery. We therefore hypothesized that TRPC photopharmacology may enable uniquely specific modulation of immune responses. Utilizing a recently established TRPC3/6/7 selective, photochromic benzimidazole agonist OptoBI-1, we set out to test this concept for mast cell NFAT signaling. RBL-2H3 mast cells were found to express TRPC3 and TRPC7 mRNA but lacked appreciable Ca2+/NFAT signaling in response to OptoBI-1 photocycling. Genetic modification of the cells by introduction of single recombinant TRPC isoforms revealed that exclusively TRPC6 expression generated OptoBI-1 sensitivity suitable for opto-chemical control of NFAT1 activity. Expression of any of three benzimidazole-sensitive TRPC isoforms (TRPC3/6/7) reconstituted plasma membrane TRPC conductances in RBL cells, and expression of TRPC6 or TRPC7 enabled light-mediated generation of temporally defined Ca2+ signaling patterns. Nonetheless, only cells overexpressing TRPC6 retained essentially low basal levels of NFAT activity and displayed rapid and efficient NFAT nuclear translocation upon OptoBI-1 photocycling. Hence, genetic modification of the mast cells' TRPC expression pattern by the introduction of TRPC6 enables highly specific opto-chemical control over Ca2+ transcription coupling in these immune cells.


Assuntos
Mastócitos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Linhagem Celular Tumoral , Imunidade/fisiologia , Optogenética/métodos , RNA Mensageiro/metabolismo , Ratos
8.
Sensors (Basel) ; 18(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400261

RESUMO

The amperometric determination of cysteine, using an electrode based on ternary silver-copper sulfide, is presented. Electrochemical characterizations (using cyclic voltammetry) of three electrode materials revealed that the electrode based on the material that consists of jalpaite (Ag3CuS2), doped with a small amount of metallic silver, has the best electrocatalytical performance for cysteine oxidation. For the amperometric determination, 0.142 V at pH 5 and 0.04 V at pH 7 vs. Ag/AgCl, related to the electrocatalytical oxidation of thiol group, were chosen. Electrochemical impedance spectroscopy together with Fourier transform infrared spectroscopy (FTIR) revealed that oxidation takes place on the electrode surface with fouling effect, which does not affect a wide linear working range between 1 µM and 100 µM. Sensitivities, at pH 5 and pH 7, are calculated to be 0.11 µA µM-1 and 0.10 µA µM-1, respectively. The detection limits were determined to be 0.036 µM and 0.024 µM for pH 5 and pH 7, respectively. In the presence of uric acid, folic acid, ascorbic acid, and glucose no interference was noticed. This electrode showed remarkable stability and excellent reproducibility. The electrode was exploited for the determination of cysteine in a dietary supplement with the excellent recoveries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...