Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(35): e2203033, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35790033

RESUMO

Anion-exchange-membrane water electrolyzers (AEMWEs) in principle operate without soluble electrolyte using earth-abundant catalysts and cell materials and thus lower the cost of green H2 . Current systems lack competitive performance and the durability needed for commercialization. One critical issue is a poor understanding of catalyst-specific degradation processes in the electrolyzer. While non-platinum-group-metal (non-PGM) oxygen-evolution catalysts show excellent performance and durability in strongly alkaline electrolyte, this has not transferred directly to pure-water AEMWEs. Here, AEMWEs with five non-PGM anode catalysts are built and the catalysts' structural stability and interactions with the alkaline ionomer are characterized during electrolyzer operation and post-mortem. The results show catalyst electrical conductivity is one key to obtaining high-performing systems and that many non-PGM catalysts restructure during operation. Dynamic Fe sites correlate with enhanced degradation rates, as does the addition of soluble Fe impurities. In contrast, electronically conductive Co3 O4 nanoparticles (without Fe in the crystal structure) yield AEMWEs from simple, standard preparation methods, with performance and stability comparable to IrO2 . These results reveal the fundamental dynamic catalytic processes resulting in AEMWE device failure under relevant conditions, demonstrate a viable non-PGM catalyst for AEMWE operation, and illustrate underlying design rules for engineering anode catalyst/ionomer layers with higher performance and durability.

2.
ACS Appl Mater Interfaces ; 14(16): 18261-18274, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35435656

RESUMO

Among existing water electrolysis (WE) technologies, anion-exchange-membrane water electrolyzers (AEMWEs) show promise for low-cost operation enabled by the basic solid-polymer electrolyte used to conduct hydroxide ions. The basic environment within the electrolyzer, in principle, allows the use of non-platinum-group metal catalysts and less-expensive cell components compared to acidic-membrane systems. Nevertheless, AEMWEs are still underdeveloped, and the degradation and failure modes are not well understood. To improve performance and durability, supporting electrolytes such as KOH and K2CO3 are often added to the water feed. The effect of the anion interactions with the ionomer membrane (particularly other than OH-), however, remains poorly understood. We studied three commercial anion-exchange ionomers (Aemion, Sustainion, and PiperION) during oxygen evolution (OER) at oxidizing potentials in several supporting electrolytes and characterized their chemical stability with surface-sensitive techniques. We analyzed factors including the ionomer conductivity, redox potential, and pH tolerance to determine what governs ionomer stability during OER. Specifically, we discovered that the oxidation of Aemion at the electrode surface is favored in the presence of CO32-/HCO3- anions perhaps due to the poor conductivity of that ionomer in the carbonate/bicarbonate form. Sustainion tends to lose its charge-carrying groups as a result of electrochemical degradation favored in basic electrolytes. PiperION seems to be similarly negatively affected by a pH drop and low carbonate/bicarbonate conductivity under the applied oxidizing potential. The insight into the interactions of the supporting electrolyte anions with the ionomer/membrane helps shed light on some of the degradation pathways possible inside of the AEMWE and enables the informed design of materials for water electrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...