Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(45)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34380114

RESUMO

Radio-frequency (14.6 MHz) AC magnetic susceptibility,χAC', of Dy2Ti2O7was measured using self-oscillating tunnel-diode resonator. Measurements were made with the excitation AC field parallel to the superimposed DC magnetic field up to 5 T in a wide temperature range from 50 mK to 100 K. At 14.6 MHz, a known broad peak ofχAC'(T)from kHz-range audio-frequency measurements around 15 K for both [111] and [110] directions shifts to 45 K, continuing the Arrhenius activated behavior with the same activation energy barrier ofEa≈ 230 K. Magnetic field dependence ofχAC'along [111] reproduces previously reported low-temperature two-in-two-out to three-in-one-out spin configuration transition at about 1 T, and an intermediate phase between 1 and 1.5 T. The boundaries of the intermediate phase show reasonable overlap with the literature data and connect at a critical endpoint of the first order transition line, suggesting that these features are frequency independent. An unusual upturn of the magnetic susceptibility atT→ 0 was observed in magnetic fields between 1.5 T and 2 T for both magnetic field directions, before fully polarized configuration sets in above 2 T.

2.
J Phys Condens Matter ; 30(38): 385802, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30089706

RESUMO

A new pyrochlore compound, NaCaNi2F7, was recently synthesized and has a single magnetic site with spin-1 Ni2+ . We present zero field and longitudinal field muon spin rotation (µSR) measurements on this pyrochlore. Density functional theory calculations show that the most likely muon site is located between two fluorine ions, but off-centre. A characteristic F-µ-F muon spin polarization function is observed at high temperatures where Ni spin fluctuations are sufficiently rapid. The Ni2+ spins undergo spin freezing into a disordered ground state below 4 K, with a characteristic internal field strength of 140 G. Persistent Ni spin dynamics are present to our lowest temperatures (75 mK), a feature characteristic of many geometrically frustrated magnetic systems.

3.
J Phys Condens Matter ; 29(4): 045801, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875333

RESUMO

The crystal structures and magnetic properties of three previously unreported A2B2F7 pyrochlore materials, NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7 are presented. In these compounds, either S = 2Fe2+ or S = 5/2Mn2+ is on the B site, while nonmagnetic Na and Ca (Na and Sr) are disordered on the A site. The materials, which were grown as crystals via the floating zone method, display high effective magnetic moments and large Curie-Weiss thetas. Despite these characteristics, no ordering transition is detected. However, freezing of the magnetic spins, characterized by peaks in the susceptibility or specific heat, is observed at very low temperatures. The empirical frustration index, f = -θ CW/T f, for the materials are 36 (NaSrMn2F7), 27 (NaSrFe2F7), and 19 (NaCaFe2F7). AC susceptibility, DC susceptibility, and heat capacity measurements are used to characterize the observed spin glass behavior. The results suggest that the compounds are frustrated pyrochlore antiferromagnets with weak bond disorder. The magnetic phenomena that these fluoride pyrochlores exhibit, in addition to their availability as relatively large single crystals, make them promising candidates for the study of geometric magnetic frustration.

4.
Nat Commun ; 6: 7611, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26146018

RESUMO

The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition.

5.
J Phys Condens Matter ; 27(29): 296002, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26154596

RESUMO

We report the crystal growth, by the Bridgeman-Stockbarger method, and the basic magnetic properties of a new cobalt-based pyrochlore, NaSrCo2F7. Single-crystal structure determination shows that Na and Sr are completely disordered on the non-magnetic large atom A sites, while magnetic [Formula: see text] Co(2+) fully occupies the pyrochlore lattice B sites. NaSrCo2F7 displays strong antiferromagnetic interactions ([Formula: see text]), a large effective moment ([Formula: see text]), and no spin freezing until 3 K. Thus, NaSrCo2F7 is a geometrically frustrated antiferromagnet with a frustration index [Formula: see text]. Ac susceptibility, dc susceptibility, and heat capacity are utilized to characterize the spin freezing. We argue that NaSrCo2F7 and the related material NaCaCo2F7 are examples of frustrated pyrochlore antiferromagnets with weak bond disorder.

6.
J Phys Condens Matter ; 26(40): 402201, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25211386

RESUMO

We report a corrected crystal structure for the CePt(2)In(7) superconductor, refined from single crystal x-ray diffraction data. The corrected crystal structure shows a different Pt-In stacking along the c-direction in this layered material than was previously reported. In addition, all of the atomic sites are fully occupied with no evidence of atom site mixing, resolving a discrepancy between the observed high resistivity ratio of the material and the atomic disorder present in the previous structural model. The Ce-Pt distance and coordination is typical of that seen in all other reported Ce(n)M(m)In(3n+2 m) compounds. Our band structure calculations based on the correct structure reveal three bands at the Fermi level that are more 3D than those previously proposed, and density functional theory (DFT) calculations show that the new structure has a significantly lower energy.

7.
J Phys Condens Matter ; 26(21): 212201, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24804822

RESUMO

Resistivity, dc magnetization, and heat capacity measurements are reported for superconducting NaBi. T(c), the electronic contribution to the specific heat γ, the ΔC(p)/γT(c) ratio, and the Debye temperature are found to be 2.15 K, 3.4 mJ mol(-1) K(-2), 0.78, and 140 K respectively. The calculated electron-phonon coupling constant (λ(ep) = 0.62) implies that NaBi is a moderately coupled superconductor. The upper critical field and coherence length are found to be 250 Oe and 115 nm, respectively. Electronic structure calculations show NaBi to be a good metal, in agreement with the experiments; the p(x) and p(y) orbitals of Bi dominate the electronic states at the Fermi Energy.


Assuntos
Bismuto/química , Condutividade Elétrica , Elétrons , Magnetismo , Sódio/química , Temperatura Alta , Modelos Químicos , Fônons , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...