Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3504, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108471

RESUMO

Ultrafast nonlinear photonics enables a host of applications in advanced on-chip spectroscopy and information processing. These rely on a strong intensity dependent (nonlinear) refractive index capable of modulating optical pulses on sub-picosecond timescales and on length scales suitable for integrated photonics. Currently there is no platform that can provide this for the UV spectral range where broadband spectra generated by nonlinear modulation can pave the way to new on-chip ultrafast (bio-) chemical spectroscopy devices. We demonstrate the giant nonlinearity of UV hybrid light-matter states (exciton-polaritons) up to room temperature in an AlInGaN waveguide. We experimentally measure ultrafast nonlinear spectral broadening of UV pulses in a compact 100 µm long device and deduce a nonlinearity 1000 times that in common UV nonlinear materials and comparable to non-UV polariton devices. Our demonstration promises to underpin a new generation of integrated UV nonlinear light sources for advanced spectroscopy and measurement.

2.
Phys Rev Lett ; 125(19): 197402, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216594

RESUMO

We study a 2D system of trion polaritons at the quantum level and demonstrate that for monolayer semiconductors they can exhibit a strongly nonlinear optical response. The effect is due to the composite nature of trion-based excitations resulting in their nontrivial quantum statistical properties, and enhanced phase space filling effects. We present the full quantum theory to describe the statistics of trion polaritons, and demonstrate that the associated nonlinearity persists at the level of few quanta, where two qualitatively different regimes of photon antibunching are present for weak and strong single photon-trion coupling. We find that single photon emission from trion polaritons becomes experimentally feasible in state-of-the-art transition metal dichalcogenide setups. This can foster the development of quantum polaritonics using 2D monolayers as a material platform.

3.
Nat Commun ; 11(1): 3589, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680995

RESUMO

Highly nonlinear optical materials with strong effective photon-photon interactions are required for ultrafast and quantum optical signal processing circuitry. Here we report strong Kerr-like nonlinearities by employing efficient optical transitions of charged excitons (trions) observed in semiconducting transition metal dichalcogenides (TMDCs). By hybridising trions in monolayer MoSe2 at low electron densities with a microcavity mode, we realise trion-polaritons exhibiting significant energy shifts at small photon fluxes due to phase space filling. We find the ratio of trion- to neutral exciton-polariton interaction strength is in the range from 10 to 100 in TMDC materials and that trion-polariton nonlinearity is comparable to that in other polariton systems. The results are in good agreement with a theory accounting for the composite nature of excitons and trions and deviation of their statistics from that of ideal bosons and fermions. Our findings open a way to scalable quantum optics applications with TMDCs.

4.
Nat Commun ; 9(1): 4797, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442886

RESUMO

Two-dimensional transition metal dichalcogenides (TMDs) provide a unique possibility to generate and read-out excitonic valley coherence using linearly polarized light, opening the way to valley information transfer between distant systems. However, these excitons have short lifetimes (ps) and efficiently lose their valley coherence via the electron-hole exchange interaction. Here, we show that control of these processes can be gained by embedding a monolayer of WSe2 in an optical microcavity, forming part-light-part-matter exciton-polaritons. We demonstrate optical initialization of valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than displayed by bare excitons. We utilize an external magnetic field alongside selective exciton-cavity-mode detuning to control the polariton valley pseudospin vector rotation, which reaches 45° at B = 8 T. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures.

5.
Phys Rev Lett ; 120(16): 167402, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29756939

RESUMO

We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.

6.
Phys Rev Lett ; 120(9): 097401, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547302

RESUMO

We study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from S and P_{x,y} photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our Letter shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom, and interactions.

7.
Nat Commun ; 8(1): 1554, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146904

RESUMO

Exciton-polaritons in semiconductor microcavities form a highly nonlinear platform to study a variety of effects interfacing optical, condensed matter, quantum and statistical physics. We show that the complex polariton patterns generated by picosecond pulses in microcavity wire waveguides can be understood as the Cherenkov radiation emitted by bright polariton solitons, which is enabled by the unique microcavity polariton dispersion, which has momentum intervals with positive and negative group velocities. Unlike in optical fibres and semiconductor waveguides, we observe that the microcavity wire Cherenkov radiation is predominantly emitted with negative group velocity and therefore propagates backwards relative to the propagation direction of the emitting soliton. We have developed a theory of the microcavity wire polariton solitons and of their Cherenkov radiation and conducted a series of experiments, where we have measured polariton-soliton pulse compression, pulse breaking and emission of the backward Cherenkov radiation.

8.
Phys Rev Lett ; 119(9): 097403, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949573

RESUMO

We study exciton-polariton nonlinear optical fluids in the high momentum waveguide regime for the first time. We demonstrate the formation of dark solitons with the expected dependence of width on fluid density for both main classes of soliton-forming fluid defects. The results are well described by numerical modeling of the fluid propagation. We deduce a continuous wave nonlinearity more than ten times that on picosecond time scales, arising due to interaction with the exciton reservoir.

10.
Phys Rev Lett ; 115(24): 246401, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26705642

RESUMO

We report an extended family of spin textures of zero-dimensional exciton-polaritons spatially confined in tunable open microcavity structures. The transverse-electric-transverse-magnetic (TE-TM) splitting, which is enhanced in the open cavity structures, leads to polariton eigenstates carrying quantized spin vortices. Depending on the strength and anisotropy of the cavity confining potential and of the TE-TM induced splitting, which can be tuned via the excitonic or photonic fractions, the exciton-polariton emissions exhibit either spin-vortex-like patterns or linear polarization, in good agreement with theoretical modeling.

11.
Nat Commun ; 6: 8579, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446783

RESUMO

Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light-matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized.

12.
Nat Commun ; 6: 8317, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26400748

RESUMO

New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light-matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark-bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons.

13.
Phys Rev Lett ; 115(25): 256401, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722931

RESUMO

We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energy-momentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts.

14.
Nano Lett ; 14(12): 7003-8, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375802

RESUMO

Integration of quasi-two-dimensional (2D) films of metal-chalcogenides in optical microcavities permits new photonic applications of these materials. Here we present tunable microcavities with monolayer MoS2 or few monolayer GaSe films. We observe significant modification of spectral and temporal properties of photoluminescence (PL): PL is emitted in spectrally narrow and wavelength-tunable cavity modes with quality factors up to 7400; a 10-fold PL lifetime shortening is achieved, a consequence of Purcell enhancement of the spontaneous emission rate.

15.
Phys Rev Lett ; 112(4): 046403, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580473

RESUMO

We report on the spin properties of bright polariton solitons supported by an external pump to compensate losses. We observe robust circularly polarized solitons when a circularly polarized pump is applied, a result attributed to phase synchronization between nondegenerate TE and TM polarized polariton modes at high momenta. For the case of a linearly polarized pump, either σ+ or σ- circularly polarized bright solitons can be switched on in a controlled way by a σ+ or σ- writing beam, respectively. This feature arises directly from the widely differing interaction strengths between co- and cross-circularly polarized polaritons. In the case of orthogonally linearly polarized pump and writing beams, the soliton emission on average is found to be unpolarized, suggesting strong spatial evolution of the soliton polarization. The observed results are in agreement with theory, which predicts stable circularly polarized solitons and unstable linearly polarized solitons.

16.
Phys Rev Lett ; 111(14): 146401, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138259

RESUMO

We report on the two-dimensional gap-soliton nature of exciton-polariton macroscopic coherent phases (PMCP) in a square lattice with a tunable amplitude. The resonantly excited PMCP forms close to the negative mass M point of the lattice band structure with energy within the lattice band gap and its wave function localized within a few lattice periods. The PMCPs are well described as gap solitons resulting from the interplay between repulsive polariton-polariton interactions and effective attractive forces due to the negative mass. The solitonic nature accounts for the reduction of the PMCP coherence length and optical excitation threshold with increasing lattice amplitude.

17.
Phys Rev Lett ; 106(25): 257401, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21770670

RESUMO

A key property of equilibrium exciton-polariton condensates in semiconductor microcavities is the suppression of the Zeeman splitting under a magnetic field. By studying magnetophotoluminescence spectra from a GaAs microcavity, we show experimentally that a similar effect occurs in a nonequilibrium polariton condensate arising from polariton parametric scattering. In this case, the quenching of Zeeman splitting is related to a phase synchronization of spin-up and spin-down polarized polariton condensates caused by a nonlinear coupling via the coherent pump state.

18.
Phys Rev Lett ; 105(11): 116402, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20867591

RESUMO

We demonstrate that the tunable potential introduced by a surface acoustic wave on a homogeneous polariton condensate leads to fragmentation of the condensate into an array of wires which move with the acoustic velocity. Reduction of the spatial coherence of the condensate emission along the surface acoustic wave direction is attributed to the suppression of coupling between the spatially modulated condensates. Interparticle interactions observed at high polariton densities screen the acoustic potential, partially reversing its effect on spatial coherence.

19.
Phys Rev Lett ; 104(12): 126402, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366553

RESUMO

We demonstrate the creation of vortices in a macroscopically occupied polariton state formed in a semiconductor microcavity. A weak external laser beam carrying orbital angular momentum (OAM) is used to imprint a vortex on the condensate arising from the polariton optical parametric oscillator (OPO). The vortex core radius is found to decrease with increasing pump power, and is determined by polariton-polariton interactions. As a result of OAM conservation in the parametric scattering process, the excitation consists of a vortex in the signal and a corresponding antivortex in the idler of the OPO. The experimental results are in good agreement with a theoretical model of a vortex in the polariton OPO.

20.
Phys Rev Lett ; 105(21): 216402, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231327

RESUMO

The transmission of a pump laser resonant with the lower polariton branch of a semiconductor microcavity is shown to be highly dependent on the degree of circular polarization of the pump. Spin dependent anisotropy of polariton-polariton interactions allows the internal polarization to be controlled by varying the pump power. The formation of spatial patterns, spin rings with a high degree of circular polarization, arising as a result of polarization bistability, is observed. A phenomenological model based on effective semiclassical equations of motion provides a good description of the experimental results. Inclusion of interactions with the incoherent exciton reservoir, which provides spin-independent blueshifts of the polariton modes, is found to be essential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...