Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452398

RESUMO

Checkpoint kinase 1 (Chk1) plays an important role in regulation of the cell cycle, DNA damage response and cell death, and represents an attractive target in anticancer therapy. Small-molecule inhibitors of Chk1 have been intensively investigated either as single agents or in combination with various chemotherapeutic drugs and they can enhance the chemosensitivity of numerous tumor types. Here we newly demonstrate that pharmacological inhibition of Chk1 using potent and selective inhibitor SCH900776, currently profiled in phase II clinical trials, significantly enhances cytotoxic effects of the combination of platinum-based drugs (cisplatin or LA-12) and TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in human prostate cancer cells. The specific role of Chk1 in the drug combination-induced cytotoxicity was confirmed by siRNA-mediated silencing of this kinase. Using RNAi-based methods we also showed the importance of Bak-dependent mitochondrial apoptotic pathway in the combined anticancer action of SCH900776, cisplatin and TRAIL. The triple drug combination-induced cytotoxicity was partially enhanced by siRNA-mediated Mcl-1 silencing. Our findings suggest that targeting Chk1 may be used as an efficient strategy for sensitization of prostate cancer cells to killing action of platinum-based chemotherapeutic drugs and TRAIL.

2.
Pharmacol Rep ; 74(1): 148-158, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34780054

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a major contributor to the worldwide cancer burden. Recent studies on HCC have demonstrated dramatic alterations in expression of several cytochrome P450 (CYP) family members that play a crucial role in biotransformation of many drugs and other xenobiotics; however, the mechanisms responsible for their deregulation remain unclear. METHODS: We investigated a potential involvement of miRNAs in downregulation of expression of CYPs observed in HCC tumors. We compared miRNA expression profiles (TaqMan Array Human MicroRNA v3.0 TLDA qPCR) between HCC human patient tumors with strong (CYP-) and weak/no (CYP+) downregulation of drug-metabolizing CYPs. The role of significantly deregulated miRNAs in modulation of expression of the CYPs and associated xenobiotic receptors was then investigated in human liver HepaRG cells transfected with relevant miRNA mimics or inhibitors. RESULTS: We identified five differentially expressed miRNAs in CYP- versus CYP+ tumors, namely miR-29c, miR-125b1, miR-505, miR-653 and miR-675. The two most-upregulated miRNAs found in CYP- tumor samples, miR-29c and miR-653, were found to act as efficient suppressors of CYP1A2 or AHR expression. CONCLUSIONS: Our results revealed a novel role of miR-653 and miR-29c in regulation of expresion of CYPs involved in crucial biotransformation processes in liver, which are often deregulated during liver cancer progression.


Assuntos
Carcinoma Hepatocelular , Citocromo P-450 CYP1A2/metabolismo , Neoplasias Hepáticas , MicroRNAs/metabolismo , Biotransformação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Xenobióticos/metabolismo
3.
Toxicology ; 461: 152897, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403729

RESUMO

Cytochrome P450 family 1 (CYP1) enzymes contribute both to metabolism of xenobiotics and to the control of endogenous levels of ligands of the aryl hydrocarbon receptor (AhR). Their activities, similar to other CYPs, can be altered in tumor tissues. Here, we examined a possible role of proliferative/survival pathways signaling, which is often deregulated in tumor cells, and possible links with p300 histone acetyltransferase (a transcriptional co-activator) in the control of CYP1 expression, focusing particularly on CYP1A1. Using cell models derived from human liver, we observed that the induction of CYP1A1 expression, as well as other CYP1 enzymes, was reduced in exponentially growing cells, as compared with their non-dividing counterparts. The siRNA-mediated inhibition of proliferation/pro-survival signaling pathway effectors (such as ß-catenin and/or Hippo pathway effectors YAP/TAZ) increased the AhR ligand-induced CYP1A1 mRNA levels in liver HepaRG cells, and/or in colon carcinoma HCT-116 cells. The activation of proliferative Wnt/ß-catenin signaling in HCT-116 cells reduced both the induction of CYP1 enzymes and the binding of p300 to the promoter of CYP1A1 or CYP1B1 genes. These results seem to indicate that aberrant proliferative signaling in tumor cells could suppress induction of CYP1A1 (or other CYP1 enzymes) via competition for p300 binding. This mechanism could be involved in modulation of the metabolism of both endogenous and exogenous substrates of CYP1A1 (and other CYP1 enzymes), with possible further consequences for alterations of the AhR signaling in tumor cells, or additional functional roles of CYP1 enzymes.


Assuntos
Proliferação de Células/fisiologia , Neoplasias do Colo/patologia , Citocromo P-450 CYP1A1/genética , Fígado/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Neoplasias do Colo/genética , Citocromo P-450 CYP1A1/biossíntese , Proteína p300 Associada a E1A/metabolismo , Indução Enzimática/fisiologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Via de Sinalização Hippo/fisiologia , Humanos , Transdução de Sinais/fisiologia , Via de Sinalização Wnt/fisiologia
4.
Toxicol Sci ; 172(2): 368-384, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536130

RESUMO

The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/ß-catenin, or tumor growth factor-ß signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fígado/efeitos dos fármacos , Modelos Biológicos , Dibenzodioxinas Policloradas/toxicidade , Células-Tronco/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/genética , Linhagem Celular , Proliferação de Células/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/patologia , RNA Interferente Pequeno/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Células-Tronco/patologia , Transativadores/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Transfecção , Proteínas de Sinalização YAP
5.
PLoS One ; 12(11): e0188584, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182622

RESUMO

Searching for new strategies for effective elimination of human prostate cancer cells, we investigated the cooperative cytotoxic action of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and two platinum-based complexes, cisplatin or LA-12, and related molecular mechanisms. We demonstrated a notable ability of cisplatin or LA-12 to enhance the sensitivity of several human prostate cancer cell lines to TRAIL-induced cell death via an engagement of mitochondrial apoptotic pathway. This was accompanied by augmented Bid cleavage, Bak activation, loss of mitochondrial membrane potential, activation of caspase-8, -10, -9, and -3, and XIAP cleavage. RNAi-mediated silencing of Bid or Bak in Bax-deficient DU 145 cells suppressed the drug combination-induced cytotoxicity, further underscoring the involvement of mitochondrial signaling. The caspase-10 was dispensable for enhancement of cisplatin/LA-12 and TRAIL combination-induced cell death and stimulation of Bid cleavage. Importantly, we newly demonstrated LA-12-mediated enhancement of TRAIL-induced cell death in cancer cells derived from human patient prostate tumor specimens. Our results provide convincing evidence that employing TRAIL combined with cisplatin/LA-12 could contribute to more effective killing of prostate cancer cells compared to the individual action of the drugs, and offer new mechanistic insights into their cooperative anticancer action.


Assuntos
Amantadina/análogos & derivados , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 10/metabolismo , Cisplatino/farmacologia , Mitocôndrias/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Neoplasias da Próstata/patologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Amantadina/farmacologia , Humanos , Masculino , Mitocôndrias/metabolismo , Neoplasias da Próstata/metabolismo
6.
Neoplasia ; 19(10): 830-841, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28888100

RESUMO

Although Chk1 kinase inhibitors are currently under clinical investigation as effective cancer cell sensitizers to the cytotoxic effects of numerous chemotherapeutics, there is still a considerable uncertainty regarding their role in modulation of anticancer potential of platinum-based drugs. Here we newly demonstrate the ability of one of the most specific Chk1 inhibitors, SCH900776 (MK-8776), to enhance human colon cancer cell sensitivity to the cytotoxic effects of platinum(II) cisplatin and platinum(IV)- LA-12 complexes. The combined treatment with SCH900776 and cisplatin or LA-12 results in apparent increase in G1/S phase-related apoptosis, stimulation of mitotic slippage, and senescence of HCT116 cells. We further show that the cancer cell response to the drug combinations is significantly affected by the p21, p53, and PTEN status. In contrast to their wt counterparts, the p53- or p21-deficient cells treated with SCH900776 and cisplatin or LA-12 enter mitosis and become polyploid, and the senescence phenotype is strongly suppressed. While the cell death induced by SCH900776 and cisplatin or LA-12 is significantly delayed in the absence of p53, the anticancer action of the drug combinations is significantly accelerated in p21-deficient cells, which is associated with stimulation of apoptosis beyond G2/M cell cycle phase. We also show that cooperative killing action of the drug combinations in HCT116 cells is facilitated in the absence of PTEN. Our results indicate that SCH900776 may act as an important modulator of cytotoxic response triggered by platinum-based drugs in colon cancer cells.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Neoplasias do Colo/metabolismo , Compostos de Platina/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/genética , Cisplatino/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...