Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 103(1): 77-86, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055600

RESUMO

The kidney is an essential organ that ensures bodily fluid homeostasis and removes soluble waste products from the organism. Nephrons, the functional units of the kidney, comprise a blood filter, the glomerulus or glomus, and an epithelial tubule that processes the filtrate from the blood or coelom and selectively reabsorbs solutes, such as sugars, proteins, ions, and water, leaving waste products to be eliminated in the urine. Genes coding for transporters are segmentally expressed, enabling the nephron to sequentially process the filtrate. The Xenopus embryonic kidney, the pronephros, which consists of a single large nephron, has served as a valuable model to identify genes involved in nephron formation and patterning. Therefore, the developmental patterning program that generates these segments is of great interest. Prior work has defined the gene expression profiles of Xenopus nephron segments via in situ hybridization strategies, but a comprehensive understanding of the cellular makeup of the pronephric kidney remains incomplete. Here, we carried out single-cell mRNA sequencing of the functional Xenopus pronephric nephron and evaluated its cellular composition through comparative analyses with previous Xenopus studies and single-cell mRNA sequencing of the adult mouse kidney. This study reconstructs the cellular makeup of the pronephric kidney and identifies conserved cells, segments, and associated gene expression profiles. Thus, our data highlight significant conservation in podocytes, proximal and distal tubule cells, and divergence in cellular composition underlying the capacity of each nephron to remove wastes in the form of urine, while emphasizing the Xenopus pronephros as a model for physiology and disease.


Assuntos
Rim , Néfrons , Animais , Camundongos , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Glomérulos Renais/embriologia , Néfrons/embriologia , RNA Mensageiro/genética , Xenopus laevis/embriologia
2.
Cell Rep ; 36(1): 109340, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34233186

RESUMO

E-cadherin junctions facilitate assembly and disassembly of cell contacts that drive development and homeostasis of epithelial tissues. In this study, using Xenopus embryonic kidney and Madin-Darby canine kidney (MDCK) cells, we investigate the role of the Wnt/planar cell polarity (PCP) formin Daam1 (Dishevelled-associated activator of morphogenesis 1) in regulating E-cadherin-based intercellular adhesion. Using live imaging, we show that Daam1 localizes to newly formed cell contacts in the developing nephron. Furthermore, analyses of junctional filamentous actin (F-actin) upon Daam1 depletion indicate decreased microfilament localization and slowed turnover. We also show that Daam1 is necessary for efficient and timely localization of junctional E-cadherin, mediated by Daam1's formin homology domain 2 (FH2). Finally, we establish that Daam1 signaling promotes organized movement of renal cells. This study demonstrates that Daam1 formin junctional activity is critical for epithelial tissue organization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Néfrons/embriologia , Néfrons/metabolismo , Proteínas de Xenopus/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Caderinas/metabolismo , Adesão Celular , Cães , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Imageamento Tridimensional , Células Madin Darby de Rim Canino , Masculino , Néfrons/ultraestrutura , Domínios Proteicos , Transporte Proteico , Proteínas de Xenopus/química , Xenopus laevis/embriologia
3.
Genesis ; 59(1-2): e23410, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496382

RESUMO

Cilia are microtubule-based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.


Assuntos
Ciliopatias/genética , Modelos Animais de Doenças , Xenopus laevis/genética , Peixe-Zebra/genética , Animais , Ciliopatias/metabolismo , Ciliopatias/patologia , Fenótipo , Xenopus laevis/metabolismo , Peixe-Zebra/metabolismo
4.
PLoS One ; 14(8): e0221698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31469868

RESUMO

Kidneys are composed of numerous ciliated epithelial tubules called nephrons. Each nephron functions to reabsorb nutrients and concentrate waste products into urine. Defects in primary cilia are associated with abnormal formation of nephrons and cyst formation in a wide range of kidney disorders. Previous work in Xenopus laevis and zebrafish embryos established that loss of components that make up the Wnt/PCP pathway, Daam1 and ArhGEF19 (wGEF) perturb kidney tubulogenesis. Dishevelled, which activates both the canonical and non-canonical Wnt/PCP pathway, affect cilia formation in multiciliated cells. In this study, we investigated the role of the noncanoncial Wnt/PCP components Daam1 and ArhGEF19 (wGEF) in renal ciliogenesis utilizing polarized mammalian kidney epithelia cells (MDCKII and IMCD3) and Xenopus laevis embryonic kidney. We demonstrate that knockdown of Daam1 and ArhGEF19 in MDCKII and IMCD3 cells leads to loss of cilia, and Daam1's effect on ciliogenesis is mediated by the formin-activity of Daam1. Moreover, Daam1 co-localizes with the ciliary transport protein Ift88 and is present in cilia. Interestingly, knocking down Daam1 in Xenopus kidney does not lead to loss of cilia. These data suggests a new role for Daam1 in the formation of primary cilia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/genética , Cílios/metabolismo , Células Epiteliais/metabolismo , Rim/citologia , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Animais , Células Cultivadas , Ciliopatias/etiologia , Ciliopatias/metabolismo , Ciliopatias/patologia , Forminas , Técnicas de Silenciamento de Genes , Fenótipo , Via de Sinalização Wnt , Xenopus laevis
5.
Genes (Basel) ; 9(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642376

RESUMO

Xenopus laevis embryos are an established model for studying kidney development. The nephron structure and genetic pathways that regulate nephrogenesis are conserved between Xenopus and humans, allowing for the study of human disease-causing genes. Xenopus embryos are also amenable to large-scale screening, but studies of kidney disease-related genes have been impeded because assessment of kidney development has largely been limited to examining fixed embryos. To overcome this problem, we have generated a transgenic line that labels the kidney. We characterize this cdh17:eGFP line, showing green fluorescent protein (GFP) expression in the pronephric and mesonephric kidneys and colocalization with known kidney markers. We also demonstrate the feasibility of live imaging of embryonic kidney development and the use of cdh17:eGFP as a kidney marker for secretion assays. Additionally, we develop a new methodology to isolate and identify kidney cells for primary culture. We also use morpholino knockdown of essential kidney development genes to establish that GFP expression enables observation of phenotypes, previously only described in fixed embryos. Taken together, this transgenic line will enable primary kidney cell culture and live imaging of pronephric and mesonephric kidney development. It will also provide a simple means for high-throughput screening of putative human kidney disease-causing genes.

6.
Pediatr Nephrol ; 32(4): 547-555, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27099217

RESUMO

While kidney donations stagnate, the number of people in need of kidney transplants continues to grow. Although transplanting culture-grown organs is years away, pursuing the engineering of the kidney de novo is a valid means of closing the gap between the supply and demand of kidneys for transplantation. The structural organization of a mouse kidney is similar to that of humans. Therefore, mice have traditionally served as the primary model system for the study of kidney development. The mouse is an ideal model organism for understanding the complexity of the human kidney. Nonetheless, the elaborate structure of the mammalian kidney makes the discovery of new therapies based on de novo engineered kidneys more challenging. In contrast to mammals, amphibians have a kidney that is anatomically less complex and develops faster. Given that analogous genetic networks regulate the development of mammalian and amphibian nephric organs, using embryonic kidneys of Xenopus laevis (African clawed frog) to analyze inductive cell signaling events and morphogenesis has many advantages. Pioneering work that led to the ability to generate kidney organoids from embryonic cells was carried out in Xenopus. In this review, we discuss how Xenopus can be utilized to compliment the work performed in mammalian systems to understand kidney development.


Assuntos
Rim/embriologia , Rim/crescimento & desenvolvimento , Organogênese/fisiologia , Xenopus/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Modelos Biológicos , Néfrons/embriologia , Néfrons/crescimento & desenvolvimento
7.
J Vis Exp ; (111)2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27168375

RESUMO

The embryonic kidney of Xenopus laevis (frog), the pronephros, consists of a single nephron, and can be used as a model for kidney disease. Xenopus embryos are large, develop externally, and can be easily manipulated by microinjection or surgical procedures. In addition, fate maps have been established for early Xenopus embryos. Targeted microinjection into the individual blastomere that will eventually give rise to an organ or tissue of interest can be used to selectively overexpress or knock down gene expression within this restricted region, decreasing secondary effects in the rest of the developing embryo. In this protocol, we describe how to utilize established Xenopus fate maps to target the developing Xenopus kidney (the pronephros), through microinjection into specific blastomere of 4- and 8-cell embryos. Injection of lineage tracers allows verification of the specific targeting of the injection. After embryos have developed to stage 38 - 40, whole-mount immunostaining is used to visualize pronephric development, and the contribution by targeted cells to the pronephros can be assessed. The same technique can be adapted to target other tissue types in addition to the pronephros.


Assuntos
Microinjeções/métodos , Pronefro , Xenopus laevis , Animais , Regulação da Expressão Gênica no Desenvolvimento , Xenopus , Xenopus laevis/anatomia & histologia , Xenopus laevis/crescimento & desenvolvimento
8.
Dev Dyn ; 239(4): 1162-77, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20235228

RESUMO

Somites give rise to the vertebral column and segmented musculature of adult vertebrates. The cell movements that position cells within somites along the anteroposterior and dorsoventral axes are not well understood. Using a fate mapping approach, we show that at the onset of Xenopus laevis gastrulation, mesoderm cells undergo distinct cell movements to form myotome fibers positioned in discrete locations within somites and along the anteroposterior axis. We show that the distribution of presomitic cells along the anteroposterior axis is influenced by convergent and extension movements of the notochord. Heterochronic and heterotopic transplantations between presomitic gastrula and early tail bud stages show that these cells are interchangeable and can form myotome fibers in locations determined by the host embryo. However, additional transplantation experiments revealed differences in the competency of presomitic cells to form myotome fibers, suggesting that maturation within the tail bud presomitic mesoderm is required for myotome fiber differentiation.


Assuntos
Padronização Corporal , Fibras Musculares Esqueléticas/fisiologia , Xenopus laevis/embriologia , Animais , Movimento Celular , Transplante de Células/fisiologia , Quimera/embriologia , Quimera/crescimento & desenvolvimento , Embrião não Mamífero , Feminino , Gástrula/citologia , Gástrula/embriologia , Gástrula/fisiologia , Gástrula/transplante , Masculino , Modelos Biológicos , Desenvolvimento Muscular/fisiologia , Notocorda/embriologia , Notocorda/fisiologia , Somitos/embriologia , Somitos/fisiologia , Somitos/transplante , Fatores de Tempo , Xenopus laevis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA