Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 95(5): 2001-2018, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28726986

RESUMO

The depletion of water resources, in terms of both quantity and quality, has become a major concern both locally and globally. Ruminants, in particular, are under increased public scrutiny due to their relatively high water use per unit of meat or milk produced. Estimating the water footprint of livestock production is a relatively new field of research for which methods are still evolving. This review describes the approaches used to quantify water use in ruminant production systems as well as the methodological and conceptual issues associated with each approach. Water use estimates for the main products from ruminant production systems are also presented, along with possible management strategies to reduce water use. In the past, quantifying water withdrawal in ruminant production focused on the water demand for drinking or operational purposes. Recently, the recognition of water as a scarce resource has led to the development of several methodologies including water footprint assessment, life cycle assessment, and livestock water productivity to assess water use and its environmental impacts. These methods differ with respect to their target outcome (efficiency or environmental impacts), geographic focus (local or global), description of water sources (green, blue, and gray), handling of water quality concerns, the interpretation of environmental impacts, and the metric by which results are communicated (volumetric units or impact equivalents). Ruminant production is a complex activity where animals are often reared at different sites using a range of resources over their lifetime. Additional water use occurs during slaughter, product processing, and packaging. Estimating water use at the various stages of meat and milk production and communicating those estimates will help producers and other stakeholders identify hotspots and implement strategies to improve water use efficiency. Improvements in ruminant productivity (i.e., BW and milk production) and reproductive efficiency can also reduce the water footprint per unit product. However, given that feed production makes up the majority of water use by ruminants, research and development efforts should focus on this area. More research and clarity are needed to examine the validity of assumptions and possible trade-offs between ruminants' water use and other sustainability indicators.


Assuntos
Leite/metabolismo , Carne Vermelha , Ruminantes/crescimento & desenvolvimento , Água/análise , Criação de Animais Domésticos , Animais , Conservação dos Recursos Naturais , Meio Ambiente , Gado , Carne Vermelha/normas , Abastecimento de Água
2.
J Anim Sci ; 94(8): 3147-3158, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27695772

RESUMO

Ruminants raised for meat and milk are important sources of protein in human diets worldwide. Their unique digestive system allows them to derive energy and nourishment from forages, making use of vast areas of grazing lands not suitable for arable cropping or biofuel production and avoiding direct competition for grain that can be used as human food. However, sustaining an ever-growing population of ruminants consuming forages poses a dilemma: while exploiting their ecological niche, forage-fed ruminants produce large amount of enteric methane, a potent greenhouse gas. Resolving this quandary would allow ruminants an expanded role in meeting growing global demands for livestock products. One way around the dilemma is to devise forage-based diets and feeding systems that reduce methane emissions per unit of milk or meat produced. Ongoing research has made significant strides toward this objective. A wider opportunity is to look beyond methane emissions alone and consider all greenhouse gas emissions from the entire livestock-producing system. For example, by raising ruminants in systems using forages, some of the methane emissions can be offset by preserving or enhancing soil carbon reserves, thereby withholding carbon dioxide from the air. Similarly, well-managed systems based on forages may reduce synthetic fertilizer use by more effective use of manure and nitrogen-fixing plants, thereby curtailing nitrous oxide emissions. The potential environmental benefits of forage-based systems may be expanded even further by considering their other ecological benefits, such as conserving biodiversity, improving soil health, enhancing water quality, and providing wildlife habitat. The quandary, then, can be alleviated by managing ruminants within a holistic land-livestock synchrony that considers not only methane emissions but also suppression of other greenhouse gases as well as other ecological benefits. Given the complexity of such systems, there likely are no singular "best-management" practices that can be recommended everywhere. Using systems-based approaches such as life cycle analysis, ruminant production can be tuned for local lands to achieve greatest net benefits overall. In many instances, such systems, based on forages, may maintain high output of milk and meat while also furnishing other ecosystem benefits, such as reduced overall greenhouse gas emissions.


Assuntos
Ração Animal/análise , Criação de Animais Domésticos/métodos , Conservação dos Recursos Naturais/métodos , Ruminantes/metabolismo , Animais , Dieta/veterinária , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA