Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Eur J Hum Genet ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678163

RESUMO

Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.

2.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37451268

RESUMO

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Assuntos
Deficiência Intelectual , Fosfatidilinositóis , Animais , Síndrome , Actinas , Peixe-Zebra/genética , Deficiência Intelectual/genética , Monoéster Fosfórico Hidrolases/genética , Fosfatos de Fosfatidilinositol
3.
Brain ; 146(8): 3513-3527, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917474

RESUMO

RNA polymerase I transcribes ribosomal DNA to produce precursor 47S rRNA. Post-transcriptional processing of this rRNA generates mature 28S, 18S and 5.8S rRNAs, which form the ribosomes, together with 5S rRNA, assembly factors and ribosomal proteins. We previously reported a homozygous variant in the catalytic subunit of RNA polymerase I, POLR1A, in two brothers with leukodystrophy and progressive course. However, the disease mechanism remained unknown. In this report, we describe another missense variant POLR1A NM_015425.3:c.1925C>A; p.(Thr642Asn) in homozygosity in two unrelated patients. Patient 1 was a 16-year-old male and Patient 2 was a 2-year-old female. Both patients manifested neurological deficits, with brain MRIs showing hypomyelinating leukodystrophy and cerebellar atrophy; and in Patient 1 additionally with hypointensity of globi pallidi and small volume of the basal ganglia. Patient 1 had progressive disease course, leading to death at the age of 16.5 years. Extensive in vitro experiments in fibroblasts from Patient 1 documented that the mutated POLR1A led to aberrant rRNA processing and degradation, and abnormal nucleolar homeostasis. Proteomics data analyses and further in vitro experiments documented abnormal protein homeostasis, and endoplasmic reticulum stress responses. We confirm that POLR1A biallelic variants cause neurodegenerative disease, expand the knowledge of the clinical phenotype of the disorder, and provide evidence for possible pathological mechanisms leading to POLR1A-related leukodystrophy.


Assuntos
Doenças Neurodegenerativas , RNA Polimerase I , Masculino , Feminino , Humanos , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Doenças Neurodegenerativas/genética , Proteostase , RNA Ribossômico/metabolismo , Ribossomos , Processamento Pós-Transcricional do RNA
4.
HGG Adv ; 4(2): 100181, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36785559

RESUMO

A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.


Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Precursores de RNA , Mutação , Linhagem , Retinose Pigmentar/diagnóstico , Sequenciamento Completo do Genoma , Proteínas da Matriz Extracelular/genética
5.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429068

RESUMO

Pathogenic variants in RPE65 lead to retinal diseases, causing a vision impairment. In this work, we investigated the pathomechanism behind the frequent RPE65 variant, c.11+5G>A. Previous in silico predictions classified this change as a splice variant. Our prediction using novel software's suggested a 124-nt exon elongation containing a premature stop codon. This elongation was validated using midigenes-based approaches. Similar results were observed in patient-derived induced pluripotent stem cells (iPSC) and photoreceptor precursor cells. However, the splicing defect in all cases was detected at low levels and thereby does not fully explain the recessive condition of the resulting disease. Long-read sequencing discarded other rearrangements or variants that could explain the diseases. Subsequently, a more relevant model was employed: iPSC-derived retinal pigment epithelium (RPE) cells. In patient-derived iPSC-RPE cells, the expression of RPE65 was strongly reduced even after inhibiting a nonsense-mediated decay, contradicting the predicted splicing defect. Additional experiments demonstrated a cell-specific gene expression reduction due to the presence of the c.11+5G>A variant. This decrease also leads to the lack of the RPE65 protein, and differences in size and pigmentation between the patient and control iPSC-RPE. Altogether, our data suggest that the c.11+5G>A variant causes a cell-specific defect in the expression of RPE65 rather than the anticipated splicing defect which was predicted in silico.


Assuntos
Células-Tronco Pluripotentes Induzidas , Splicing de RNA , Humanos , Splicing de RNA/genética , Epitélio Pigmentado da Retina/metabolismo , Éxons/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
NPJ Genom Med ; 7(1): 65, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351915

RESUMO

Pathogenic variants in the OPN1LW/OPN1MW gene cluster are causal for a range of mild to severe visual impairments with color deficiencies. The widely utilized short-read next-generation sequencing (NGS) is inappropriate for the analysis of the OPN1LW/OPN1MW gene cluster and many patients with pathogenic variants stay underdiagnosed. A diagnostic genetic assay was developed for the OPN1LW/OPN1MW gene cluster, consisting of copy number analysis via multiplex ligation-dependent probe amplification and sequence analysis via long-read circular consensus sequencing. Performance was determined on 50 clinical samples referred for genetic confirmation of the clinical diagnosis (n = 43) or carrier status analysis (n = 7). A broad range of pathogenic haplotypes were detected, including deletions, hybrid genes, single variants and combinations of variants. The developed genetic assay for the OPN1LW/OPN1MW gene cluster is a diagnostic test that can detect both structural and nucleotide variants with a straightforward analysis, improving diagnostic care of patients with visual impairment.

7.
Clin Case Rep ; 10(4): e05637, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35387289

RESUMO

This study aimed to describe the surgical challenges, management, and value of intraoperative optical coherence tomography in a case of a bilateral Descemet Stripping Automated Endothelial Keratoplasty corneal transplantation at 17 weeks of age for the treatment of severe posterior polymorphous corneal dystrophy resulting from a de novo mutation of the OVOL2-gene.

8.
Stem Cell Res ; 60: 102689, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121194

RESUMO

Leber congenital amaurosis (LCA) can be caused by mutations in more than 20 different genes. One of these, RPE65, encodes a protein essential for the visual cycle that is expressed in retinal pigment epithelium cells. In this work, we describe the generation and characterization of the human iPSC line SCTCi16-A. This hiPSC line was generated from peripheral blood mononuclear cells (PBMCs) from a patient affected with LCA caused by the homozygous c.11+5G>A variant in the RPE65 gene. Reprograming was conducted using episomal vectors containing OCT3/4, SOX2, KLF4, L-MYC, and LIN28.


Assuntos
Células-Tronco Pluripotentes Induzidas , Amaurose Congênita de Leber , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação , cis-trans-Isomerases/genética
9.
Acta Ophthalmol ; 100(4): 395-402, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34431609

RESUMO

PURPOSE: To assess the incidence of Stargardt disease (STGD1) and to evaluate demographics of incident cases. METHODS: For this retrospective cohort study, demographic, clinical and genetic data of patients with a clinical diagnosis of STGD1 were registered between September 2010 and January 2020 in a nationwide disease registry. Annual incidence (2014-2018) and point prevalence (2018) were assessed on the basis of this registry. RESULTS: A total of 800 patients were registered, 56% were female and 83% were of European ancestry. The incidence was 1.67-1.95:1,000,000 per year and the point prevalence in 2018 was approximately 1:22,000-1:19,000 (with and without 10% of potentially unregistered cases). Age at onset was associated with sex (p = 0.027, Fisher's exact); 1.9x more women than men were observed (140 versus 74) amongst patients with an age at onset between 10 and 19 years, while the sex ratio in other age-at-onset categories approximated one. Late-onset STGD1 (≥45 years) constituted 33% of the diagnoses in 2014-2018 compared to 19% in 2004-2008. Diagnostic delay (≥2 years between the first documentation of macular abnormalities and diagnosis) was associated with older age of onset (p = 0.001, Mann-Whitney). Misdiagnosis for age-related macular degeneration (22%) and incidental STGD1 findings (14%) was common in patients with late-onset STGD1. CONCLUSION: The observed prevalence of STGD1 in real-world data was lower than expected on the basis of population ABCA4 allele frequencies. Late-onset STGD1 was more frequently diagnosed in recent years, likely due to higher awareness of its phenotype. In this pretherapeutic era, mis- and underdiagnosis of especially late-onset STGD1 and the role of sex in STGD1 should receive special attention.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Diagnóstico Tardio , Transportadores de Cassetes de Ligação de ATP/genética , Feminino , Humanos , Incidência , Masculino , Mutação , Países Baixos/epidemiologia , Sistema de Registros , Estudos Retrospectivos , Doença de Stargardt
10.
Brain ; 144(12): 3635-3650, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34114611

RESUMO

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Assuntos
Epilepsia/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genótipo , Humanos , Lactente , Masculino , Mutação , Fenótipo , Adulto Jovem
11.
Hum Mutat ; 42(4): 473-486, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600043

RESUMO

Hypomagnesemia, seizures, and intellectual disability (HSMR) syndrome is a rare disorder caused by mutations in the cyclin M2 (CNNM2) gene. Due to the limited number of cases, extensive phenotype analyses of these patients have not been performed, hindering early recognition of patients. In this study, we established the largest cohort of HSMR to date, aiming to improve recognition and diagnosis of this complex disorder. Eleven novel variants in CNNM2 were identified in nine single sporadic cases and in two families with suspected HSMR syndrome. 25 Mg2+ uptake assays demonstrated loss-of-function in seven out of nine variants in CNNM2. Interestingly, the pathogenic mutations resulted in decreased plasma membrane expression. The phenotype of those affected by pathogenic CNNM2 mutations was compared with five previously reported cases of HSMR. All patients suffered from hypomagnesemia (0.44-0.72 mmol/L), which could not be fully corrected by Mg2+ supplementation. The majority of patients (77%) experienced generalized seizures and exhibited mild to moderate intellectual disability and speech delay. Moreover, severe obesity was present in most patients (89%). Our data establish hypomagnesemia, seizures, intellectual disability, and obesity as hallmarks of HSMR syndrome. The assessment of these major features offers a straightforward tool for the clinical diagnosis of HSMR.


Assuntos
Proteínas de Transporte de Cátions , Deficiência Intelectual , Proteínas de Transporte de Cátions/genética , Ciclinas/genética , Heterozigoto , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Fenótipo
12.
Am J Med Genet A ; 182(1): 229-249, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710777

RESUMO

Joubert syndrome (JS) is a recessive neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation recognizable on axial brain magnetic resonance imaging as the "Molar Tooth Sign". Although defined by the neurological features, JS is associated with clinical features affecting many other organ systems, particularly progressive involvement of the retina, kidney, and liver. JS is a rare condition; therefore, many affected individuals may not have easy access to subspecialty providers familiar with JS (e.g., geneticists, neurologists, developmental pediatricians, ophthalmologists, nephrologists, hepatologists, psychiatrists, therapists, and educators). Expert recommendations can enable practitioners of all types to provide quality care to individuals with JS and know when to refer for subspecialty care. This need will only increase as precision treatments targeting specific genetic causes of JS emerge. The goal of these recommendations is to provide a resource for general practitioners, subspecialists, and families to maximize the health of individuals with JS throughout the lifespan.


Assuntos
Anormalidades Múltiplas/epidemiologia , Cerebelo/anormalidades , Anormalidades do Olho/epidemiologia , Pessoal de Saúde , Doenças Renais Císticas/epidemiologia , Transtornos do Neurodesenvolvimento/epidemiologia , Retina/anormalidades , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/terapia , Tronco Encefálico/patologia , Cerebelo/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Anormalidades do Olho/terapia , Diretrizes para o Planejamento em Saúde , Humanos , Rim/patologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Doenças Renais Císticas/terapia , Fígado/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/terapia , Retina/patologia
13.
Am J Hum Genet ; 105(2): 403-412, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31303265

RESUMO

POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder.


Assuntos
Regulação da Expressão Gênica , Mutação , Transtornos do Neurodesenvolvimento/etiologia , Fatores do Domínio POU/genética , Ativação Transcricional , Sequência de Aminoácidos , Criança , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Transtornos do Neurodesenvolvimento/patologia , Fatores do Domínio POU/química , Conformação Proteica , Homologia de Sequência
14.
Am J Hum Genet ; 104(6): 1210-1222, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079897

RESUMO

We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.


Assuntos
Proteínas de Ligação a DNA/genética , Epilepsia/etiologia , Variação Genética , Heterozigoto , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/patologia , Feminino , Haploinsuficiência , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo , Adulto Jovem
15.
Genet Med ; 21(9): 2059-2069, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30923367

RESUMO

PURPOSE: To investigate the effect of different DEAF1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and on DEAF1 activity in vitro. METHODS: We assembled a cohort of 23 patients with de novo and biallelic DEAF1 variants, described the genotype-phenotype correlation, and investigated the differential effect of de novo and recessive variants on transcription assays using DEAF1 and Eif4g3 promoter luciferase constructs. RESULTS: The proportion of the most prevalent phenotypic features, including intellectual disability, speech delay, motor delay, autism, sleep disturbances, and a high pain threshold, were not significantly different in patients with biallelic and pathogenic de novo DEAF1 variants. However, microcephaly was exclusively observed in patients with recessive variants (p < 0.0001). CONCLUSION: We propose that different variants in the DEAF1 gene result in a phenotypic spectrum centered around neurodevelopmental delay. While a pathogenic de novo dominant variant would also incapacitate the product of the wild-type allele and result in a dominant-negative effect, a combination of two recessive variants would result in a partial loss of function. Because the clinical picture can be nonspecific, detailed phenotype information, segregation, and functional analysis are fundamental to determine the pathogenicity of novel variants and to improve the care of these patients.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Microcefalia/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Alelos , Transtorno Autístico/genética , Transtorno Autístico/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Exoma/genética , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/patologia , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Microcefalia/patologia , Mutação de Sentido Incorreto/genética , Adulto Jovem
16.
Eur J Hum Genet ; 27(2): 278-290, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30291340

RESUMO

Deletions on chromosome 15q14 are a known chromosomal cause of cleft palate, typically co-occurring with intellectual disability, facial dysmorphism, and congenital heart defects. The identification of patients with loss-of-function variants in MEIS2, a gene within this deletion, suggests that these features are attributed to haploinsufficiency of MEIS2. To further delineate the phenotypic spectrum of the MEIS2-related syndrome, we collected 23 previously unreported patients with either a de novo sequence variant in MEIS2 (9 patients), or a 15q14 microdeletion affecting MEIS2 (14 patients). All but one de novo MEIS2 variant were identified by whole-exome sequencing. One variant was found by targeted sequencing of MEIS2 in a girl with a clinical suspicion of this syndrome. In addition to the triad of palatal defects, heart defects, and developmental delay, heterozygous loss of MEIS2 results in recurrent facial features, including thin and arched eyebrows, short alae nasi, and thin vermillion. Genotype-phenotype comparison between patients with 15q14 deletions and patients with sequence variants or intragenic deletions within MEIS2, showed a higher prevalence of moderate-to-severe intellectual disability in the former group, advocating for an independent locus for psychomotor development neighboring MEIS2.


Assuntos
Fissura Palatina/genética , Cardiopatias Congênitas/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Mutação com Perda de Função , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Fissura Palatina/patologia , Feminino , Cardiopatias Congênitas/patologia , Heterozigoto , Proteínas de Homeodomínio/metabolismo , Humanos , Deficiência Intelectual/patologia , Masculino , Fenótipo , Síndrome , Fatores de Transcrição/metabolismo , Adulto Jovem
17.
Hum Mol Genet ; 28(1): 96-104, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239721

RESUMO

Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/-12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal-but submaximal-GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.


Assuntos
Glutaminase/genética , Glutaminase/fisiologia , Adolescente , Animais , Encéfalo/metabolismo , Catarata/genética , Pré-Escolar , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Feminino , Fibroblastos , Mutação com Ganho de Função/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/fisiologia , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
18.
Invest Ophthalmol Vis Sci ; 59(11): 4384-4391, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30193310

RESUMO

Purpose: To describe the phenotypic spectrum of retinal disease caused by the c.2991+1655A>G mutation in CEP290 and to compare disease severity between homozygous and compound heterozygous patients. Methods: Medical records were reviewed for best-corrected visual acuity (BCVA), age of onset, fundoscopy descriptions. Foveal outer nuclear layer (ONL) and ellipsoid zone (EZ) presence was assessed using spectral-domain optical coherence tomography (SD-OCT). Differences between compound heterozygous and homozygous patients were analyzed based on visual performance and visual development. Results: A total of 66 patients were included. The majority of patients had either light perception or no light perception. In the remaining group of 14 patients, median BCVA was 20/195 Snellen (0.99 LogMAR; range 0.12-1.90) for the right eye, and 20/148 Snellen (0.87 LogMAR; range 0.22-1.90) for the left. Homozygous patients tended to be more likely to develop light perception compared to more severely affected compound heterozygous patients (P = 0.080) and are more likely to improve from no light perception to light perception (P = 0.022) before the age of 6 years. OCT data were available in 12 patients, 11 of whom had retained foveal ONL and EZ integrity up to 48 years (median 23 years) of age. Conclusions: Homozygous patients seem less severely affected compared to their compound-heterozygous peers. Improvement of visual function may occur in the early years of life, suggesting a time window for therapeutic intervention up to the approximate age of 17 years. This period may be extended by an intact foveal ONL and EZ on OCT.


Assuntos
Antígenos de Neoplasias/genética , Íntrons/genética , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/genética , Mutação , Proteínas de Neoplasias/genética , Adolescente , Adulto , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Proteínas do Citoesqueleto , Eletrorretinografia , Feminino , Seguimentos , Amplificação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Amaurose Congênita de Leber/fisiopatologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Retina/diagnóstico por imagem , Retina/fisiopatologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Adulto Jovem
19.
Am J Med Genet A ; 176(11): 2259-2275, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194818

RESUMO

De novo germline mutations in GNB1 have been associated with a neurodevelopmental phenotype. To date, 28 patients with variants classified as pathogenic have been reported. We add 18 patients with de novo mutations to this cohort, including a patient with mosaicism for a GNB1 mutation who presented with a milder phenotype. Consistent with previous reports, developmental delay in these patients was moderate to severe, and more than half of the patients were non-ambulatory and nonverbal. The most observed substitution affects the p.Ile80 residue encoded in exon 6, with 28% of patients carrying a variant at this residue. Dystonia and growth delay were observed more frequently in patients carrying variants in this residue, suggesting a potential genotype-phenotype correlation. In the new cohort of 18 patients, 50% of males had genitourinary anomalies and 61% of patients had gastrointestinal anomalies, suggesting a possible association of these findings with variants in GNB1. In addition, cutaneous mastocytosis, reported once before in a patient with a GNB1 variant, was observed in three additional patients, providing further evidence for an association to GNB1. We will review clinical and molecular data of these new cases and all previously reported cases to further define the phenotype and establish possible genotype-phenotype correlations.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/genética , Estudos de Associação Genética , Mutação/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/genética , Feminino , Subunidades beta da Proteína de Ligação ao GTP/química , Humanos , Masculino , Sistema Nervoso/crescimento & desenvolvimento , Fenótipo , Gravidez , Estrutura Terciária de Proteína
20.
Pediatr Nephrol ; 33(10): 1701-1712, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29974258

RESUMO

BACKGROUND: Nephronophthisis is an autosomal recessive ciliopathy and important cause of end-stage renal disease (ESRD) in children and young adults. Diagnostic delay is frequent. This study investigates clinical characteristics, initial symptoms, and genetic defects in a cohort with nephronophthisis-related ciliopathy, to improve early detection and genetic counseling. METHODS: Forty patients from 36 families with nephronophthisis-related ciliopathy were recruited at university medical centers and online. Comprehensive clinical and genotypic data were recorded. Patients without molecular diagnosis were offered genetic analysis. RESULTS: Of 40 patients, 45% had isolated nephronophthisis, 48% syndromic diagnosis, and 7% nephronophthisis with extrarenal features not constituting a recognizable syndrome. Patients developed ESRD at median 13 years (range 5-47). Median age of symptom onset was 9 years in both isolated and syndromic forms (range 5-26 vs. 5-33). Common presenting symptoms were fatigue (42%), polydipsia/polyuria (33%), and hypertension (21%). Renal ultrasound showed small-to-normal-sized kidneys, increased echogenicity (65%), cysts (43%), and abnormal corticomedullary differentiation (32%). Renal biopsies in eight patients showed nonspecific signs of chronic kidney disease (CKD). Twenty-three patients (58%) had genetic diagnosis upon inclusion. Thirteen of those without a genetic diagnosis gave consent for genetic testing, and a cause was identified in five (38%). CONCLUSIONS: Nephronophthisis is genetically and phenotypically heterogeneous and should be considered in children and young adults presenting with persistent fatigue and polyuria, and in all patients with unexplained CKD. As symptom onset can occur into adulthood, presymptomatic monitoring of kidney function in syndromic ciliopathy patients should continue until at least age 30.


Assuntos
Ciliopatias/diagnóstico , Aconselhamento Genético , Testes Genéticos , Doenças Renais Císticas/congênito , Falência Renal Crônica/prevenção & controle , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idade de Início , Biópsia , Criança , Ciliopatias/complicações , Ciliopatias/genética , Ciliopatias/patologia , Proteínas do Citoesqueleto , Diagnóstico Tardio/prevenção & controle , Feminino , Humanos , Rim/diagnóstico por imagem , Rim/patologia , Doenças Renais Císticas/complicações , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Falência Renal Crônica/etiologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Países Baixos , Sistema de Registros/estatística & dados numéricos , Fatores de Tempo , Ultrassonografia , Sequenciamento do Exoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...