Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Breath Res ; 18(3)2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38701772

RESUMO

The analysis of volatile organic compounds (VOCs) in exhaled air has attracted the interest of the scientific community because it provides the possibility of monitoring physiological and metabolic processes and non-invasive diagnostics of various diseases. However, this method remains underused in clinical practice as well as in research because of the lack of standardized procedures for the collection, storage and transport of breath samples, which would guarantee good reproducibility and comparability of results. The method of sampling, as well as the storage time of the breath samples in the polymer bags used for sample storage and transport, affect the composition and concentration of VOCs present in the breath samples. The aim of our study was to compare breath samples obtained using two methods with fully disposable equipment: a Haldane sampling tube intended for direct breath collection and breath samples exhaled into a transparent Tedlar bag. The second task was to monitor the stability of selected compounds of real breath samples stored in a Tedlar bag for 6 h. Gas chromatography coupled with ion mobility spectrometry (GC-IMS) implemented in the BreathSpec®device was used to analyse exhaled breath. Our results showed a significant difference in the signal intensity of some volatiles when taking a breath sample with a Haldane tube and a Tedlar bag. Due to its endogenous origin, acetone levels were significantly higher when the Haldane tube sampler was used while elevated levels of 2-propanol and unidentified VOC (designated as VOC 3) in the Tedlar bag samples likely originated from contamination of the Tedlar bags. The VOC stability study revealed compound-specific signal intensity changes of the selected VOCs with storage time in the Tedlar bags, with some volatiles showing increasing signal intensity during storage in Tedlar bags. This limits the use of Tedlar bags only for very limited time and carefully selected purpose. Our results highlight the importance of careful design and implementation of experiments and clinical protocols to obtain relevant and reliable results.


Assuntos
Testes Respiratórios , Manejo de Espécimes , Compostos Orgânicos Voláteis , Humanos , Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/análise , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Mobilidade Iônica/instrumentação , Masculino , Feminino , Reprodutibilidade dos Testes , Adulto , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Expiração , Pessoa de Meia-Idade , Fatores de Tempo
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 290-293, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891293

RESUMO

Extensive efforts have been recently devoted to implement fast and reliable algorithms capable of assessing the physiological response of the organism to physiological stress. In this study, we propose the comparison between model-free and linear parametric methods as regards their ability to detect alterations in the dynamics and in the complexity of cardiovascular and respiratory variability evoked by postural and mental stress. Dynamic entropy (DE) and information storage (IS) measures were calculated on three physiological time-series, i.e. heart period, respiratory volume and systolic arterial pressure, on 61 healthy subjects monitored in resting conditions as well as during head-up tilt and while performing a mental arithmetic task. The results of the comparison suggest the feasibility of DE and IS measures computed from different physiological signals to discriminate among resting and stress states. If compared to the model-free algorithm, the faster linear method appears to be capable of detecting the same (or even more) statistically significant variations of DE or IS between resting and stress conditions, being thus in perspective more suitable for the integration within wearable devices. The computation of entropy indices extracted from multiple physiological signals acquired through wearables will allow a real-time stress assessment on people in daily-life situations.


Assuntos
Sistema Cardiovascular , Coração , Estudos de Viabilidade , Feminino , Frequência Cardíaca , Humanos , Gravidez , Estresse Fisiológico
3.
Philos Trans A Math Phys Eng Sci ; 379(2212): 20200250, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34689619

RESUMO

While cross-spectral and information-theoretic approaches are widely used for the multivariate analysis of physiological time series, their combined utilization is far less developed in the literature. This study introduces a framework for the spectral decomposition of multivariate information measures, which provides frequency-specific quantifications of the information shared between a target and two source time series and of its expansion into amounts related to how the sources contribute to the target dynamics with unique, redundant and synergistic information. The framework is illustrated in simulations of linearly interacting stochastic processes, showing how it allows us to retrieve amounts of information shared by the processes within specific frequency bands which are otherwise not detectable by time-domain information measures, as well as coupling features which are not detectable by spectral measures. Then, it is applied to the time series of heart period, systolic and diastolic arterial pressure and respiration variability measured in healthy subjects monitored in the resting supine position and during head-up tilt. We show that the spectral measures of unique, redundant and synergistic information shared by these variability series, integrated within specific frequency bands of physiological interest and reflect the mechanisms of short-term regulation of cardiovascular and cardiorespiratory oscillations and their alterations induced by the postural stress. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.


Assuntos
Sistema Cardiovascular , Pressão Sanguínea , Frequência Cardíaca , Humanos , Análise Multivariada , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA