Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 12(4): e054404, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487718

RESUMO

INTRODUCTION: Breast cancer is still the most common malignancy among women worldwide. The Prospective Breast Cancer Biobank (PBCB) collects blood and urine from patients with breast cancer every 6 or 12 months for 11 years from 2011 to 2030 at two university hospitals in Western Norway. The project aims to identify new biomarkers that enable detection of systemic recurrences at the molecular level. As blood represents the biological interface between the primary tumour, the microenvironment and distant metastases, liquid biopsies represent the ideal medium to monitor the patient's cancer biology for identification of patients at high risk of relapse and for early detection systemic relapse.Including patient-reported outcome measures (PROMs) allows for a vast number of possibilities to compare PROM data with biological information, enabling the study of fatigue and Quality of Life in patients with breast cancer. METHODS AND ANALYSIS: A total of 1455 patients with early-stage breast cancer are enrolled in the PBCB study, which has a one-armed prospective observational design. Participants consent to contribute liquid biopsies (i.e., peripheral blood and urine samples) every 6 or 12 months for 11 years. The liquid biopsies are the basis for detection of circulating tumour cells, circulating tumour DNA (ctDNA), exosomal micro-RNA (miRNA), miRNA in Tumour Educated Platelet and metabolomic profiles. In addition, participants respond to 10 PROM questionnaires collected annually. Moreover, a control group comprising 200 women without cancer aged 25-70 years will provide the same data. ETHICS AND DISSEMINATION: The general research biobank PBCB was approved by the Ministry of Health and Care Services in 2007, by the Regional Ethics Committee (REK) in 2010 (#2010/1957). The PROM (#2011/2161) and the biomarker study PerMoBreCan (#2015/2010) were approved by REK in 2011 and 2015 respectively. Results will be published in international peer reviewed journals. Deidentified data will be accessible on request. TRIAL REGISTRATION NUMBER: NCT04488614.


Assuntos
Neoplasias da Mama , MicroRNAs , Adulto , Idoso , Bancos de Espécimes Biológicos , Biomarcadores , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Biópsia Líquida , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estudos Observacionais como Assunto , Medidas de Resultados Relatados pelo Paciente , Estudos Prospectivos , Qualidade de Vida , Microambiente Tumoral
2.
Sci Rep ; 11(1): 7174, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785790

RESUMO

Two pathophysiological different experimental models for multiple sclerosis were analyzed in parallel using quantitative proteomics in attempts to discover protein alterations applicable as diagnostic-, prognostic-, or treatment targets in human disease. The cuprizone model reflects de- and remyelination in multiple sclerosis, and the experimental autoimmune encephalomyelitis (EAE, MOG1-125) immune-mediated events. The frontal cortex, peripheral to severely inflicted areas in the CNS, was dissected and analyzed. The frontal cortex had previously not been characterized by proteomics at different disease stages, and novel protein alterations involved in protecting healthy tissue and assisting repair of inflicted areas might be discovered. Using TMT-labelling and mass spectrometry, 1871 of the proteins quantified overlapped between the two experimental models, and the fold change compared to controls was verified using label-free proteomics. Few similarities in frontal cortex between the two disease models were observed when regulated proteins and signaling pathways were compared. Legumain and C1Q complement proteins were among the most upregulated proteins in cuprizone and hemopexin in the EAE model. Immunohistochemistry showed that legumain expression in post-mortem multiple sclerosis brain tissue (n = 19) was significantly higher in the center and at the edge of white matter active and chronic active lesions. Legumain was associated with increased lesion activity and might be valuable as a drug target using specific inhibitors as already suggested for Parkinson's and Alzheimer's disease. Cerebrospinal fluid levels of legumain, C1q and hemopexin were not significantly different between multiple sclerosis patients, other neurological diseases, or healthy controls.


Assuntos
Encefalomielite Autoimune Experimental/diagnóstico , Lobo Frontal/patologia , Esclerose Múltipla/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Complemento C1q/análise , Complemento C1q/metabolismo , Cuprizona/administração & dosagem , Cuprizona/toxicidade , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/metabolismo , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/imunologia , Regulação da Expressão Gênica/imunologia , Hemopexina/análise , Hemopexina/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Proteômica , Adulto Jovem
3.
Clin Proteomics ; 17: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963504

RESUMO

BACKGROUND: Verification of cerebrospinal fluid (CSF) biomarkers for multiple sclerosis and other neurological diseases is a major challenge due to a large number of candidates, limited sample material availability, disease and biological heterogeneity, and the lack of standardized assays. Furthermore, verification studies are often based on a low number of proteins from a single discovery experiment in medium-sized cohorts, where antibodies and surrogate peptides may differ, thus only providing an indication of proteins affected by the disease and not revealing the bigger picture or concluding on the validity of the markers. We here present a standard approach for locating promising biomarker candidates based on existing knowledge, resulting in high-quality assays covering the main biological processes affected by multiple sclerosis for comparable measurements over time. METHODS: Biomarker candidates were located in CSF-PR (proteomics.uib.no/csf-pr), and further filtered based on estimated concentration in CSF and biological function. Peptide surrogates for internal standards were selected according to relevant criteria, parallel reaction monitoring (PRM) assays created, and extensive assay quality testing performed, i.e. intra- and inter-day variation, trypsin digestion status over time, and whether the peptides were able to separate multiple sclerosis patients and controls. RESULTS: Assays were developed for 25 proteins, represented by 72 peptides selected according to relevant guidelines and available literature and tested for assay peptide suitability. Stability testing revealed 64 peptides with low intra- and inter-day variations, with 44 also being stably digested after 16 h of trypsin digestion, and 37 furthermore showing a significant difference between multiple sclerosis and controls, thereby confirming literature findings. Calibration curves and the linear area of measurement have, so far, been determined for 17 of these peptides. CONCLUSIONS: We present 37 high-quality PRM assays across 21 CSF-proteins found to be affected by multiple sclerosis, along with a recommended workflow for future development of new assays. The assays can directly be used by others, thus enabling better comparison between studies. Finally, the assays can robustly and stably monitor biological processes in multiple sclerosis patients over time, thus potentially aiding in diagnosis and prognosis, and ultimately in treatment decisions.

4.
Mol Cell Proteomics ; 16(2): 300-309, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27890865

RESUMO

The rapidly growing number of biomedical studies supported by mass spectrometry based quantitative proteomics data has made it increasingly difficult to obtain an overview of the current status of the research field. A better way of organizing the biomedical proteomics information from these studies and making it available to the research community is therefore called for. In the presented work, we have investigated scientific publications describing the analysis of the cerebrospinal fluid proteome in relation to multiple sclerosis, Parkinson's disease and Alzheimer's disease. Based on a detailed set of filtering criteria we extracted 85 data sets containing quantitative information for close to 2000 proteins. This information was made available in CSF-PR 2.0 (http://probe.uib.no/csf-pr-2.0), which includes novel approaches for filtering, visualizing and comparing quantitative proteomics information in an interactive and user-friendly environment. CSF-PR 2.0 will be an invaluable resource for anyone interested in quantitative proteomics on cerebrospinal fluid.


Assuntos
Proteínas do Líquido Cefalorraquidiano/análise , Doenças Neurodegenerativas/metabolismo , Proteômica/métodos , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Humanos , Espectrometria de Massas/métodos , Navegador
5.
J Proteome Res ; 16(1): 179-194, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27728768

RESUMO

In the current study, we conducted a quantitative in-depth proteome and deglycoproteome analysis of cerebrospinal fluid (CSF) from relapsing-remitting multiple sclerosis (RRMS) and neurological controls using mass spectrometry and pathway analysis. More than 2000 proteins and 1700 deglycopeptides were quantified, with 484 proteins and 180 deglycopeptides significantly changed between pools of RRMS and pools of controls. Approximately 300 of the significantly changed proteins were assigned to various biological processes including inflammation, extracellular matrix organization, cell adhesion, immune response, and neuron development. Ninety-six significantly changed deglycopeptides mapped to proteins that were not found changed in the global protein study. In addition, four mapped to the proteins oligo-myelin glycoprotein and noelin, which were found oppositely changed in the global study. Both are ligands to the nogo receptor, and the glycosylation of these proteins appears to be affected by RRMS. Our study gives the most extensive overview of the RRMS affected processes observed from the CSF proteome to date, and the list of differential proteins will have great value for selection of biomarker candidates for further verification.


Assuntos
Proteínas do Líquido Cefalorraquidiano/genética , Matriz Extracelular/genética , Esclerose Múltipla Recidivante-Remitente/genética , Glicoproteína Mielina-Oligodendrócito/genética , Proteoma/genética , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Adesão Celular , Proteínas do Líquido Cefalorraquidiano/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano/imunologia , Matriz Extracelular/imunologia , Proteínas da Matriz Extracelular/líquido cefalorraquidiano , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/imunologia , Expressão Gênica , Glicoproteínas/líquido cefalorraquidiano , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Imunidade Inata , Inflamação , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Glicoproteína Mielina-Oligodendrócito/líquido cefalorraquidiano , Glicoproteína Mielina-Oligodendrócito/imunologia , Neurogênese/genética , Neurogênese/imunologia , Receptor Nogo 1/genética , Receptor Nogo 1/imunologia , Receptor Nogo 1/metabolismo , Mapeamento de Interação de Proteínas , Proteoma/imunologia , Proteoma/metabolismo
6.
Methods Mol Biol ; 1394: 275-286, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26700056

RESUMO

Targeting subproteomes is a good strategy to decrease the complexity of a sample, for example in body fluid biomarker studies. Glycoproteins are proteins with carbohydrates of varying size and structure attached to the polypeptide chain, and it has been shown that glycosylation plays essential roles in several vital cellular processes, making glycosylation a particularly interesting field of study. Here, we describe a method for the enrichment of glycosylated peptides from trypsin digested proteins in human cerebrospinal fluid. We also describe how to perform the data analysis on the mass spectrometry data for such samples, focusing on site-specific identification of glycosylation sites, using user friendly open source software.


Assuntos
Biologia Computacional/métodos , Glicoproteínas , Proteoma , Proteômica/métodos , Bases de Dados de Proteínas , Fluxo de Trabalho
7.
PLoS One ; 9(3): e90429, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599184

RESUMO

Over the last years there has been an increased focus on the importance of knowing the effect of pre-analytical influence on the proteomes under study, particularly in the field of biomarker discovery. We present three proteomics studies examining the effect of blood contamination and the rostro-caudal gradient (RCG) on the cerebrospinal fluid (CSF) proteome, in addition to plasma/CSF protein ratios. The studies showed that the central nervous system (CNS) derived proteins appeared to be unaffected by the RCG, while the plasma-derived proteins showed an increase in concentration towards the lumbar area. This implies that the concentration of the plasma-derived proteins in CSF will vary depending on the volume of CSF that is collected. In the CSF samples spiked with blood, 262 of 814 quantified proteins showed an abundance increase of more than 1.5 fold, while 403 proteins had a fold change of less than 1.2 and appeared to be unaffected by blood contamination. Proteins with a high plasma/CSF ratio appeared to give the largest effect on the CSF proteome upon blood contamination. The results give important background information on how factors like blood contamination, RCG and blood-CNS-barrier influences the CSF proteome. This information is particularly important in the field of biomarker discovery, but also for routine clinical measurements. The data from the blood contamination and RCG discovery studies have been deposited to the ProteomeXchange with identifier PXD000401.


Assuntos
Proteínas Sanguíneas/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano/metabolismo , Paralisia Supranuclear Progressiva/líquido cefalorraquidiano , Artefatos , Proteínas Sanguíneas/isolamento & purificação , Proteínas do Líquido Cefalorraquidiano/isolamento & purificação , Cromatografia por Troca Iônica , Cromatografia de Fase Reversa , Humanos , Proteoma/isolamento & purificação , Proteoma/metabolismo , Punção Espinal
8.
Fluids Barriers CNS ; 10(1): 17, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23628075

RESUMO

BACKGROUND: There is little knowledge concerning the content and the mechanisms of filling of arachnoid cysts. The aim of this study was to compare the protein content of arachnoid cysts and cerebrospinal fluid by quantitative proteomics to increase the understanding of arachnoid cysts. METHODS: Arachnoid cyst fluid and cerebrospinal fluid from five patients were analyzed by quantitative proteomics in two separate experiments.In a label-free experiment arachnoid cyst fluid and cerebrospinal fluid samples from individual patients were trypsin digested and analyzed by Orbitrap mass spectrometry in a label-free manner followed by data analysis using the Progenesis software.In the second proteomics experiment, a patient sample pooling strategy was followed by MARS-14 immunodepletion of high abundant proteins, trypsin digestion, iTRAQ labelling, and peptide separation by mix-phase chromatography followed by Orbitrap mass spectrometry analysis. The results from these analyzes were compared to previously published mRNA microarray data obtained from arachnoid membranes. RESULTS: We quantified 348 proteins by the label-free individual patient approach and 1425 proteins in the iTRAQ experiment using a pool from five patients of arachnoid cyst fluid and cerebrospinal fluid. This is by far the largest number of arachnoid cyst fluid proteins ever identified, and the first large-scale quantitative comparison between the protein content of arachnoid cyst fluid and cerebrospinal fluid from the same patients at the same time. Consistently in both experiment, we found 22 proteins with significantly increased abundance in arachnoid cysts compared to cerebrospinal fluid and 24 proteins with significantly decreased abundance. We did not observe any molecular weight gradient over the arachnoid cyst membrane. Of the 46 proteins we identified as differentially abundant in our study, 45 were also detected from the mRNA expression level study. None of them were previously reported as differentially expressed. We did not quantify any of the proteins corresponding to gene products from the ten genes previously reported as differentially abundant between arachnoid cysts and control arachnoid membranes. CONCLUSIONS: From our experiments, the protein content of arachnoid cyst fluid and cerebrospinal fluid appears to be similar. There were, however, proteins that were significantly differentially abundant between arachnoid cyst fluid and cerebrospinal fluid. This could reflect the possibility that these proteins are affected by the filling mechanism of arachnoid cysts or are shed from the membranes into arachnoid cyst fluid. Our results do not support the proposed filling mechanisms of oncotic pressure or valves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...