Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 79: 102470, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569420

RESUMO

The governing principles and suites of genes for lateral elongation or incorporation of new cell wall material along the length of a rod-shaped cell are well described. In contrast, relatively little is known about unipolar elongation or incorporation of peptidoglycan at one end of the rod. Recent work in three related model systems of unipolar growth (Agrobacterium tumefaciens, Brucella abortus, and Sinorhizobium meliloti) has clearly established that unipolar growth in the Hyphomicrobiales order relies on a set of genes distinct from the canonical elongasome. Polar incorporation of envelope components relies on homologous proteins shared by the Hyphomicrobiales, reviewed here. Ongoing and future work will reveal how unipolar growth is integrated into the alphaproteobacterial cell cycle and coordinated with other processes such as chromosome segregation and cell division.

2.
Microlife ; 4: uqad024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223727

RESUMO

Cyclic AMP (cAMP) is a ubiquitous second messenger synthesized by most living organisms. In bacteria, it plays highly diverse roles in metabolism, host colonization, motility, and many other processes important for optimal fitness. The main route of cAMP perception is through transcription factors from the diverse and versatile CRP-FNR protein superfamily. Since the discovery of the very first CRP protein CAP in Escherichia coli more than four decades ago, its homologs have been characterized in both closely related and distant bacterial species. The cAMP-mediated gene activation for carbon catabolism by a CRP protein in the absence of glucose seems to be restricted to E. coli and its close relatives. In other phyla, the regulatory targets are more diverse. In addition to cAMP, cGMP has recently been identified as a ligand of certain CRP proteins. In a CRP dimer, each of the two cyclic nucleotide molecules makes contacts with both protein subunits and effectuates a conformational change that favors DNA binding. Here, we summarize the current knowledge on structural and physiological aspects of E. coli CAP compared with other cAMP- and cGMP-activated transcription factors, and point to emerging trends in metabolic regulation related to lysine modification and membrane association of CRP proteins.

3.
mBio ; 14(2): e0302822, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017526

RESUMO

In bacteria, the most prevalent receptor proteins of 3',5'-cyclic AMP (cAMP) and 3',5'-cyclic GMP (cGMP) are found among transcription factors of the Crp-Fnr superfamily. The prototypic Escherichia coli catabolite activator protein (CAP) represents the main Crp cluster of this superfamily and is known to bind cAMP and cGMP but to mediate transcription activation only in its cAMP-bound state. In contrast, both cyclic nucleotides mediate transcription activation by Sinorhizobium meliloti Clr, mapping to cluster G of Crp-like proteins. We present crystal structures of Clr-cAMP and Clr-cGMP bound to the core motif of the palindromic Clr DNA binding site (CBS). We show that both cyclic nucleotides shift ternary Clr-cNMP-CBS-DNA complexes (where cNMP is cyclic nucleotide monophosphate) to almost identical active conformations, unlike the situation known for the E. coli CAP-cNMP complex. Isothermal titration calorimetry measured similar affinities of cAMP and cGMP binding to Clr in the presence of CBS core motif DNA (equilibrium dissociation constant for cNMP (KDcNMP], ~7 to 11 µM). However, different affinities were determined in the absence of this DNA (KDcGMP, ~24 µM; KDcAMP, ~6 µM). Sequencing of Clr-coimmunoprecipitated DNA as well as electrophoretic mobility shift and promoter-probe assays expanded the list of experimentally proven Clr-regulated promoters and CBS. This comprehensive set of CBS features conserved nucleobases that are consistent with the sequence readout through interactions of Clr amino acid residues with these nucleobases, as revealed by the Clr-cNMP-CBS-DNA crystal structures. IMPORTANCE Cyclic 3',5'-AMP (cAMP) and cyclic 3',5'-GMP (cGMP) are both long known as important nucleotide secondary messengers in eukaryotes. This is also the case for cAMP in prokaryotes, whereas a signaling role for cGMP in this domain of life has been recognized only recently. Catabolite repressor proteins (CRPs) are the most ubiquitous bacterial cAMP receptor proteins. Escherichia coli CAP, the prototypic transcription regulator of the main Crp cluster, binds both cyclic mononucleotides, but only the CAP-cAMP complex promotes transcription activation. In contrast, Crp cluster G proteins studied so far are activated by cGMP or by both cAMP and cGMP. Here, we report a structural analysis of the cAMP- and cGMP-activatable cluster G member Clr from Sinorhizobium meliloti, how binding of cAMP and cGMP shifts Clr to its active conformation, and the structural basis of its DNA binding site specificity.


Assuntos
AMP Cíclico , Sinorhizobium meliloti , AMP Cíclico/metabolismo , GMP Cíclico , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte , Proteína Receptora de AMP Cíclico/metabolismo , DNA
4.
PLoS One ; 17(8): e0268683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980975

RESUMO

The actinorhizal plant Datisca glomerata (Datiscaceae, Cucurbitales) establishes a root nodule symbiosis with actinobacteria from the earliest branching symbiotic Frankia clade. A subfamily of a gene family encoding nodule-specific defensin-like cysteine-rich peptides is highly expressed in D. glomerata nodules. Phylogenetic analysis of the defensin domain showed that these defensin-like peptides share a common evolutionary origin with nodule-specific defensins from actinorhizal Fagales and with nodule-specific cysteine-rich peptides (NCRs) from legumes. In this study, the family member with the highest expression levels, DgDef1, was characterized. Promoter-GUS studies on transgenic hairy roots showed expression in the early stage of differentiation of infected cells, and transient expression in the nodule apex. DgDef1 contains an N-terminal signal peptide and a C-terminal acidic domain which are likely involved in subcellular targeting and do not affect peptide activity. In vitro studies with E. coli and Sinorhizobium meliloti 1021 showed that the defensin domain of DgDef1 has a cytotoxic effect, leading to membrane disruption with 50% lethality for S. meliloti 1021 at 20.8 µM. Analysis of the S. meliloti 1021 transcriptome showed that, at sublethal concentrations, DgDef1 induced the expression of terminal quinol oxidases, which are associated with the oxidative stress response and are also expressed during symbiosis. Overall, the changes induced by DgDef1 are reminiscent of those of some legume NCRs, suggesting that nodule-specific defensin-like peptides were part of the original root nodule toolkit and were subsequently lost in most symbiotic legumes, while being maintained in the actinorhizal lineages.


Assuntos
Fabaceae , Cisteína/metabolismo , Defensinas/genética , Defensinas/metabolismo , Escherichia coli/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio , Peptídeos/metabolismo , Filogenia , Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
5.
mBio ; 12(5): e0234621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544272

RESUMO

Members of the Rhizobiales are polarly growing bacteria that lack homologs of the canonical Rod complex. To investigate the mechanisms underlying polar cell wall synthesis, we systematically probed the function of cell wall synthesis enzymes in the plant pathogen Agrobacterium tumefaciens. The development of fluorescent d-amino acid dipeptide (FDAAD) probes, which are incorporated into peptidoglycan by penicillin-binding proteins in A. tumefaciens, enabled us to monitor changes in growth patterns in the mutants. Use of these fluorescent cell wall probes and peptidoglycan compositional analysis demonstrate that a single class A penicillin-binding protein is essential for polar peptidoglycan synthesis. Furthermore, we find evidence of an additional mode of cell wall synthesis that requires ld-transpeptidase activity. Genetic analysis and cell wall targeting antibiotics reveal that the mechanism of unipolar growth is conserved in Sinorhizobium and Brucella. This work provides insights into unipolar peptidoglycan biosynthesis employed by the Rhizobiales during cell elongation. IMPORTANCE While the structure and function of the bacterial cell wall are well conserved, the mechanisms responsible for cell wall biosynthesis during elongation are variable. It is increasingly clear that rod-shaped bacteria use a diverse array of growth strategies with distinct spatial zones of cell wall biosynthesis, including lateral elongation, unipolar growth, bipolar elongation, and medial elongation. Yet the vast majority of our understanding regarding bacterial elongation is derived from model organisms exhibiting lateral elongation. Here, we explore the role of penicillin-binding proteins in unipolar elongation of Agrobacterium tumefaciens and related bacteria within the Rhizobiales. Our findings suggest that penicillin-binding protein 1a, along with a subset of ld-transpeptidases, drives unipolar growth. Thus, these enzymes may serve as attractive targets for biocontrol of pathogenic Rhizobiales.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Alphaproteobacteria/química , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/genética , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética
6.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33608284

RESUMO

When subjected to nutritional stress, bacteria modify their amino acid metabolism and cell division activities by means of the stringent response, which is controlled by the Rsh protein in alphaproteobacteria. An important group of alphaproteobacteria are the rhizobia, which fix atmospheric N2 in symbiosis with legume plants. Although nutritional stress is common for rhizobia while infecting legume roots, the stringent response has scarcely been studied in this group of soil bacteria. In this report, we obtained a mutant with a kanamycin resistance insertion in the rsh gene of Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean. This mutant was defective for type 3 secretion system induction, plant defense suppression at early root infection, and nodulation competition. Furthermore, the mutant produced smaller nodules, although with normal morphology, which led to lower plant biomass production. Soybean (Glycine max) genes GmRIC1 and GmRIC2, involved in autoregulation of nodulation, were upregulated in plants inoculated with the mutant under the N-free condition. In addition, when plants were inoculated in the presence of 10 mM NH4NO3, the mutant produced nodules containing bacteroids, and GmRIC1 and GmRIC2 were downregulated. The rsh mutant released more auxin to the culture supernatant than the wild type, which might in part explain its symbiotic behavior in the presence of combined N. These results indicate that the B. diazoefficiens stringent response integrates into the plant defense suppression and regulation of nodulation circuits in soybean, perhaps mediated by the type 3 secretion system.IMPORTANCE The symbiotic N2 fixation carried out between prokaryotic rhizobia and legume plants performs a substantial contribution to the N cycle in the biosphere. This symbiotic association is initiated when rhizobia infect and penetrate the root hairs, which is followed by the growth and development of root nodules, within which the infective rhizobia are established and protected. Thus, the nodule environment allows the expression and function of the enzyme complex that catalyzes N2 fixation. However, during early infection, the rhizobia find a harsh environment while penetrating the root hairs. To cope with this nuisance, the rhizobia mount a stress response known as the stringent response. In turn, the plant regulates nodulation in response to the presence of alternative sources of combined N in the surrounding medium. Control of these processes is crucial for a successful symbiosis, and here we show how the rhizobial stringent response may modulate plant defense suppression and the networks of regulation of nodulation.


Assuntos
Bradyrhizobium/genética , Glycine max/microbiologia , Farmacorresistência Bacteriana/genética , Fertilizantes , Resistência a Canamicina/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Nitratos , Fixação de Nitrogênio , Proteínas de Plantas/genética , Nodulação , Glycine max/genética , Simbiose , Sistemas de Secreção Tipo III
7.
Nat Commun ; 12(1): 545, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483499

RESUMO

In Rhizobiales bacteria, such as Sinorhizobium meliloti, cell elongation takes place only at new cell poles, generated by cell division. Here, we show that the role of the FtsN-like protein RgsS in S. meliloti extends beyond cell division. RgsS contains a conserved SPOR domain known to bind amidase-processed peptidoglycan. This part of RgsS and peptidoglycan amidase AmiC are crucial for reliable selection of the new cell pole as cell elongation zone. Absence of these components increases mobility of RgsS molecules, as well as abnormal RgsS accumulation and positioning of the growth zone at the old cell pole in about one third of the cells. These cells with inverted growth polarity are able to complete the cell cycle but show partially impaired chromosome segregation. We propose that amidase-processed peptidoglycan provides a landmark for RgsS to generate cell polarity in unipolarly growing Rhizobiales.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Sinorhizobium meliloti/metabolismo , Amidoidrolases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Western Blotting , Divisão Celular/genética , Proteínas de Membrana/genética , Microscopia de Fluorescência , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento
8.
Biol Chem ; 401(12): 1335-1348, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32990642

RESUMO

Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger which has been associated with a motile to sessile lifestyle switch in many bacteria. Here, we review recent insights into c-di-GMP regulated processes related to environmental adaptations in alphaproteobacterial rhizobia, which are diazotrophic bacteria capable of fixing nitrogen in symbiosis with their leguminous host plants. The review centers on Sinorhizobium meliloti, which in the recent years was intensively studied for its c-di-GMP regulatory network.


Assuntos
GMP Cíclico/análogos & derivados , Sinorhizobium meliloti/metabolismo , GMP Cíclico/metabolismo
9.
mBio ; 11(3)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605980

RESUMO

Sinorhizobium meliloti is an alphaproteobacterium belonging to the Rhizobiales Bacteria from this order elongate their cell wall at the new cell pole, generated by cell division. Screening for protein interaction partners of the previously characterized polar growth factors RgsP and RgsM, we identified the inner membrane components of the Tol-Pal system (TolQ and TolR) and novel Rgs (rhizobial growth and septation) proteins with unknown functions. TolQ, Pal, and all Rgs proteins, except for RgsE, were indispensable for S. meliloti cell growth. Six of the Rgs proteins, TolQ, and Pal localized to the growing cell pole in the cell elongation phase and to the septum in predivisional cells, and three Rgs proteins localized to the growing cell pole only. The putative FtsN-like protein RgsS contains a conserved SPOR domain and is indispensable at the early stages of cell division. The components of the Tol-Pal system were required at the late stages of cell division. RgsE, a homolog of the Agrobacterium tumefaciens growth pole ring protein GPR, has an important role in maintaining the normal growth rate and rod cell shape. RgsD is a periplasmic protein with the ability to bind peptidoglycan. Analysis of the phylogenetic distribution of the Rgs proteins showed that they are conserved in Rhizobiales and mostly absent from other alphaproteobacterial orders, suggesting a conserved role of these proteins in polar growth.IMPORTANCE Bacterial cell proliferation involves cell growth and septum formation followed by cell division. For cell growth, bacteria have evolved different complex mechanisms. The most prevalent growth mode of rod-shaped bacteria is cell elongation by incorporating new peptidoglycans in a dispersed manner along the sidewall. A small share of rod-shaped bacteria, including the alphaproteobacterial Rhizobiales, grow unipolarly. Here, we identified and initially characterized a set of Rgs (rhizobial growth and septation) proteins, which are involved in cell division and unipolar growth of Sinorhizobium meliloti and highly conserved in Rhizobiales Our data expand the knowledge of components of the polarly localized machinery driving cell wall growth and suggest a complex of Rgs proteins with components of the divisome, differing in composition between the polar cell elongation zone and the septum.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Nucleotidases/metabolismo , Proteínas RGS/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sinorhizobium meliloti/crescimento & desenvolvimento , Agrobacterium tumefaciens/genética , Ciclo Celular , Polaridade Celular , Nucleotidases/genética , Filogenia , Proteínas RGS/genética , Rhizobiaceae/genética , Proteínas de Schizosaccharomyces pombe/genética , Sinorhizobium meliloti/citologia , Sinorhizobium meliloti/genética
10.
PLoS Genet ; 14(8): e1007594, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102748

RESUMO

Members of the Rhizobiales (class of α-proteobacteria) display zonal peptidoglycan cell wall growth at one cell pole, contrasting with the dispersed mode of cell wall growth along the sidewalls of many other rod-shaped bacteria. Here we show that the seven-transmembrane receptor (7TMR) protein RgsP (SMc00074), together with the putative membrane-anchored peptidoglycan metallopeptidase RgsM (SMc02432), have key roles in unipolar peptidoglycan formation during growth and at mid-cell during cell division in Sinorhizobium meliloti. RgsP is composed of a periplasmic globular 7TMR-DISMED2 domain, a membrane-spanning region, and cytoplasmic PAS, GGDEF and EAL domains. The EAL domain confers phosphodiesterase activity towards the second messenger cyclic di-GMP, a key regulatory player in the transition between bacterial lifestyles. RgsP and RgsM localize to sites of zonal cell wall synthesis at the new cell pole and cell divison site, suggesting a role in cell wall biogenesis. The two proteins are essential for cell wall biogenesis and cell growth. Cells depleted of RgsP or RgsM had an altered muropeptide composition and RgsM binds to peptidoglycan. RgsP and RgsM orthologs are functional when interchanged between α-rhizobial species pointing to a conserved mechanism for cell wall biogenesis/remodeling within the Rhizobiales. Overall, our findings suggest that RgsP and RgsM contribute to the regulation of unipolar cell wall biogenesis in α-rhizobia.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/química , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Sistemas do Segundo Mensageiro/genética , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Peptidoglicano/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , beta-Lactamas/farmacologia
11.
Proc Natl Acad Sci U S A ; 114(24): E4822-E4831, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559336

RESUMO

Cyclic dimeric GMP (c-di-GMP) has emerged as a key regulatory player in the transition between planktonic and sedentary biofilm-associated bacterial lifestyles. It controls a multitude of processes including production of extracellular polysaccharides (EPSs). The PilZ domain, consisting of an N-terminal "RxxxR" motif and a ß-barrel domain, represents a prototype c-di-GMP receptor. We identified a class of c-di-GMP-responsive proteins, represented by the AraC-like transcription factor CuxR in plant symbiotic α-proteobacteria. In Sinorhizobium meliloti, CuxR stimulates transcription of an EPS biosynthesis gene cluster at elevated c-di-GMP levels. CuxR consists of a Cupin domain, a helical hairpin, and bipartite helix-turn-helix motif. Although unrelated in sequence, the mode of c-di-GMP binding to CuxR is highly reminiscent to that of PilZ domains. c-di-GMP interacts with a conserved N-terminal RxxxR motif and the Cupin domain, thereby promoting CuxR dimerization and DNA binding. We unravel structure and mechanism of a previously unrecognized c-di-GMP-responsive transcription factor and provide insights into the molecular evolution of c-di-GMP binding to proteins.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Polissacarídeos Bacterianos/biossíntese , Sinorhizobium meliloti/metabolismo , Transativadores/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Fator de Transcrição AraC/química , Fator de Transcrição AraC/genética , Fator de Transcrição AraC/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada , Cristalografia por Raios X , GMP Cíclico/metabolismo , Modelos Moleculares , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , Sinorhizobium meliloti/genética , Transativadores/química , Transativadores/genética
12.
BMC Genomics ; 18(1): 282, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388876

RESUMO

BACKGROUND: Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. RESULTS: Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. CONCLUSIONS: Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis.


Assuntos
Regulação Bacteriana da Expressão Gênica , Variação Genética , Neisseria meningitidis/genética , Transcriptoma , Virulência/genética , Técnicas de Tipagem Bacteriana , Biomarcadores , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reguladores , Genoma Bacteriano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Meningite Meningocócica/sangue , Meningite Meningocócica/metabolismo , Meningite Meningocócica/microbiologia , Anotação de Sequência Molecular , Neisseria meningitidis/classificação , Neisseria meningitidis/patogenicidade , Fenótipo , Regiões Promotoras Genéticas
13.
Microbiology (Reading) ; 162(10): 1840-1856, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27535558

RESUMO

To identify physiological processes affected by cAMP in the plant-symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti Rm2011, cAMP levels were artificially increased by overexpression of its cognate adenylate/guanylate cyclase gene cyaJ. This resulted in high accumulation of cAMP in the culture supernatant, decreased swimming motility and increased production of succinoglycan, an exopolysaccharide involved in host invasion. Weaker, similar phenotypic changes were induced by overexpression of cyaB and cyaG1. Effects on swimming motility and succinoglycan production were partially dependent on clr encoding a cyclic AMP receptor-like protein. Transcriptome profiling of an cyaJ-overexpressing strain identified 72 upregulated and 82 downregulated genes. A considerable number of upregulated genes are related to polysaccharide biosynthesis and osmotic stress response. These included succinoglycan biosynthesis genes, genes of the putative polysaccharide synthesis nodP2-exoF3 cluster and feuN, the first gene of the operon encoding the FeuNPQ regulatory system. Downregulated genes were mostly related to respiration, central metabolism and swimming motility. Promoter-probe studies in the presence of externally added cAMP revealed 18 novel Clr-cAMP-regulated genes. Moreover, the addition of cGMP into the growth medium also promoted clr-dependent gene regulation. In vitro binding of Clr-cAMP and Clr-cGMP to the promoter regions of SMc02178, SMb20906,SMc04190, SMc00925, SMc01136 and cyaF2 required the DNA motif (A/C/T)GT(T/C)(T/C/A)C (N4) G(G/A)(T/A)ACA. Furthermore, SMc02178, SMb20906,SMc04190and SMc00653 promoters were activated by Clr-cAMP/cGMP in Escherichia coli as heterologous host. These findings suggest direct activation of these 7 genes by Clr-cAMP/cGMP.


Assuntos
Proteínas de Bactérias/genética , AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/metabolismo , Óperon , Regiões Promotoras Genéticas , Sinorhizobium meliloti/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Bacteriol ; 198(3): 521-35, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26574513

RESUMO

UNLABELLED: Sinorhizobium meliloti undergoes major lifestyle changes between planktonic states, biofilm formation, and symbiosis with leguminous plant hosts. In many bacteria, the second messenger 3',5'-cyclic di-GMP (c-di-GMP, or cdG) promotes a sessile lifestyle by regulating a plethora of processes involved in biofilm formation, including motility and biosynthesis of exopolysaccharides (EPS). Here, we systematically investigated the role of cdG in S. meliloti Rm2011 encoding 22 proteins putatively associated with cdG synthesis, degradation, or binding. Single mutations in 21 of these genes did not cause evident changes in biofilm formation, motility, or EPS biosynthesis. In contrast, manipulation of cdG levels by overproducing endogenous or heterologous diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) affected these processes and accumulation of N-Acyl-homoserine lactones in the culture supernatant. Specifically, individual overexpression of the S. meliloti genes pleD, SMb20523, SMb20447, SMc01464, and SMc03178 encoding putative DGCs and of SMb21517 encoding a single-domain PDE protein had an impact and resulted in increased levels of cdG. Compared to the wild type, an S. meliloti strain that did not produce detectable levels of cdG (cdG(0)) was more sensitive to acid stress. However, it was symbiotically potent, unaffected in motility, and only slightly reduced in biofilm formation. The SMc01790-SMc01796 locus, homologous to the Agrobacterium tumefaciens uppABCDEF cluster governing biosynthesis of a unipolarly localized polysaccharide, was found to be required for cdG-stimulated biofilm formation, while the single-domain PilZ protein McrA was identified as a cdG receptor protein involved in regulation of motility. IMPORTANCE: We present the first systematic genome-wide investigation of the role of 3',5'-cyclic di-GMP (c-di-GMP, or cdG) in regulation of motility, biosynthesis of exopolysaccharides, biofilm formation, quorum sensing, and symbiosis in a symbiotic alpha-rhizobial species. Phenotypes of an S. meliloti strain unable to produce cdG (cdG(0)) demonstrated that this second messenger is not essential for root nodule symbiosis but may contribute to acid tolerance. Our data further suggest that enhanced levels of cdG promote sessility of S. meliloti and uncovered a single-domain PilZ protein as regulator of motility.


Assuntos
GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica/fisiologia , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/genética , GMP Cíclico/metabolismo , Mutação , Polissacarídeos Bacterianos/biossíntese , Sinorhizobium meliloti/genética
15.
Mol Plant Microbe Interact ; 28(7): 811-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25675256

RESUMO

Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work, we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4,212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is colinear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III-secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behavior of S. fredii strains HH103, USDA257, and NGR234 with soybean.


Assuntos
Genoma Bacteriano , Glycine max/microbiologia , Sinorhizobium fredii/genética , Genes Bacterianos , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Raízes de Plantas/microbiologia , Polissacarídeos Bacterianos/genética , Percepção de Quorum , Sinorhizobium fredii/fisiologia , Simbiose/genética
16.
Proc Natl Acad Sci U S A ; 111(29): 10702-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002473

RESUMO

Quorum sensing (QS) using N-acyl homoserine lactones (AHLs) as signal molecules is a common strategy used by diverse Gram-negative bacteria. A widespread mechanism of AHL sensing involves binding of these molecules by cytosolic LuxR-type transcriptional regulators, which requires uptake of external AHLs. The outer membrane is supposed to be an efficient barrier for diffusion of long-chain AHLs. Here we report evidence that in Sinorhizobium meliloti, sensing of AHLs with acyl chains composed of 14 or more carbons is facilitated by the outer membrane protein FadLSm, a homolog of the Escherichia coli FadLEc long-chain fatty acid transporter. The effect of fadLSm on AHL sensing was more prominent for longer and more hydrophobic signal molecules. Using reporter gene fusions to QS target genes, we found that fadLSm increased AHL sensitivity and accelerated the course of QS. In contrast to FadLEc, FadLSm did not support uptake of oleic acid, but did contribute to growth on palmitoleic acid. FadLSm homologs from related symbiotic α-rhizobia and the plant pathogen Agrobacterium tumefaciens differed in their ability to facilitate long-chain AHL sensing or to support growth on oleic acid. FadLAt was found to be ineffective toward long-chain AHLs. We obtained evidence that the predicted extracellular loop 5 of FadLSm and further α-rhizobial FadL proteins contains determinants of specificity to long-chain AHLs. Replacement of a part of loop 5 by the corresponding region from α-rhizobial FadL proteins transferred sensitivity for long-chain AHLs to FadLAt.


Assuntos
Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Sinorhizobium meliloti/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Ácidos Graxos Monoinsaturados/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Dados de Sequência Molecular , Ácido Oleico/farmacologia , Fenótipo , Estrutura Terciária de Proteína , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Transdução de Sinais/efeitos dos fármacos , Sinorhizobium meliloti/efeitos dos fármacos , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento
17.
BMC Genomics ; 14: 156, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23497287

RESUMO

BACKGROUND: Sinorhizobium meliloti is a soil-dwelling α-proteobacterium that possesses a large, tripartite genome and engages in a nitrogen fixing symbiosis with its plant hosts. Although much is known about this important model organism, global characterization of genetic regulatory circuits has been hampered by a lack of information about transcription and promoters. RESULTS: Using an RNAseq approach and RNA populations representing 16 different growth and stress conditions, we comprehensively mapped S. meliloti transcription start sites (TSS). Our work identified 17,001 TSS that we grouped into six categories based on the genomic context of their transcripts: mRNA (4,430 TSS assigned to 2,657 protein-coding genes), leaderless mRNAs (171), putative mRNAs (425), internal sense transcripts (7,650), antisense RNA (3,720), and trans-encoded sRNAs (605). We used this TSS information to identify transcription factor binding sites and putative promoter sequences recognized by seven of the 15 known S. meliloti σ factors σ70, σ54, σH1, σH2, σE1, σE2, and σE9). Altogether, we predicted 2,770 new promoter sequences, including 1,302 located upstream of protein coding genes and 722 located upstream of antisense RNA or trans-encoded sRNA genes. To validate promoter predictions for targets of the general stress response σ factor, RpoE2 (σE2), we identified rpoE2-dependent genes using microarrays and confirmed TSS for a subset of these by 5' RACE mapping. CONCLUSIONS: By identifying TSS and promoters on a global scale, our work provides a firm foundation for the continued study of S. meliloti gene expression with relation to gene organization, σ factors and other transcription factors, and regulatory RNAs.


Assuntos
Genes Bacterianos , Sinorhizobium meliloti/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico , Regiões Promotoras Genéticas , RNA/metabolismo , Análise de Sequência de RNA , Fator sigma/genética , Fator sigma/metabolismo , Sinorhizobium meliloti/metabolismo , Simbiose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
18.
Mol Microbiol ; 81(5): 1233-54, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21696469

RESUMO

Sinorhizobium meliloti Rm2011 responds to sudden shifts to nitrogen or carbon starvation conditions by an accumulation of the stringent response alarmone ppGpp and remodelling of the transcriptome. The gene product of relA, Rel(Sm) , responsible for synthesis of ppGpp, shows functional similarities to E. coli SpoT. Using promoter-egfp gene fusions, we showed that in Rm2011 relA is expressed at a low rate, as a readthrough from the rpoZ promoter and from its own weak promoter. The low level of relA expression is physiologically relevant, since overexpression of Rel(Sm) inhibits ppGpp accumulation. The N-terminal portion of Rel(Sm) is required for ppGpp degradation in nutrient-sufficient cells and might be involved in regulation of the ppGpp synthase and hydrolase activities of the protein. Expression profiling of S. meliloti subjected to sudden nitrogen or carbon downshifts revealed that repression of 'house-keeping' genes is largely dependent on relA whereas activation of gene targets of the stress sigma factor RpoE2 occurred independently of relA. The regulatory genes nifA, ntrB, aniA and sinR, as well as genes related to modulation of protein biosynthesis and nucleotide catabolism, were induced in a relA-dependent manner. dksA was required for the majority of the relA-dependent regulations.


Assuntos
Ligases/biossíntese , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/genética , Transcriptoma , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligases/genética , Nitrogênio/metabolismo , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Fator sigma/genética , Fator sigma/metabolismo , Inanição
19.
J Biotechnol ; 155(1): 127-34, 2011 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-21087643

RESUMO

Sinorhizobium meliloti is a symbiotic soil bacterium that forms nitrogen-fixing nodules on roots of leguminous plants, including Medicago truncatula (barrel medic), and M. sativa (alfalfa). The Sinorhizobium-Medicago symbiosis is an important symbiosis model system. Knowledge gained from this system can be extended to other agriculturally important "rhizobial" symbioses. Since the publication of the S. meliloti genome in 2001, many new genetic, biochemical and physiological data have been generated. Effective methods to organize, store, and mine this postgenome data are crucial for continued success of the S. meliloti model system. In 2009, we introduced a portal for rhizobial genomes, RhizoGATE (Becker et al., J. Biotechnol. 140, 45-50). The RhizoGATE portal combines continuously updated S. meliloti genome annotation with postgenome data resources. Here we report integration of a new component, RhizoRegNet, to RhizoGATE. RhizoRegNet combines transcriptome data and operon predictions with published data on regulatory interactions. By allowing searching and visualisation of complex transcriptional regulatory networks, RhizoRegNet advances our understanding of transcriptional regulation in S. meliloti. The current version of RhizoRegNet is divided into 13 functional modules containing information for 114 regulators, 475 regulated genes, and 178 transcription factor binding motifs. In this report, we provide an example of how RhizoRegNet facilitates visualisation and analysis of the regulatory network for exopolysaccharide biosynthesis and motility. Presently, RhizoRegNet contains regulatory network information for S. meliloti and the closely related bacterium, S. medicae, but can be expanded to include other rhizobial species.


Assuntos
Proteínas de Bactérias/genética , Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Genes Bacterianos , Sinorhizobium meliloti/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Regulação Bacteriana da Expressão Gênica , Medicago , Fixação de Nitrogênio , Sinorhizobium meliloti/metabolismo , Software , Simbiose , Fatores de Transcrição/metabolismo , Interface Usuário-Computador
20.
J Biotechnol ; 140(1-2): 45-50, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19103235

RESUMO

Sinorhizobium meliloti is a symbiotic soil bacterium of the alphaproteobacterial subdivision. Like other rhizobia, S. meliloti induces nitrogen-fixing root nodules on leguminous plants. This is an ecologically and economically important interaction, because plants engaged in symbiosis with rhizobia can grow without exogenous nitrogen fertilizers. The S. meliloti-Medicago truncatula (barrel medic) association is an important symbiosis model. The S. meliloti genome was published in 2001, and the M. truncatula genome currently is being sequenced. Many new resources and data have been made available since the original S. meliloti genome annotation and an update was needed. In June 2008, we submitted our annotation update to the EMBL and NCBI databases. Here we describe this new annotation and a new web-based portal RhizoGATE. About 1000 annotation updates were made; these included assigning functions to 313 putative proteins, assigning EC numbers to 431 proteins, and identifying 86 new putative genes. RhizoGATE incorporates the new annotion with the S. meliloti GenDB project, a platform that allows annotation updates in real time. Locations of transposon insertions, plasmid integrations, and array probe sequences are available in the GenDB project. RhizoGATE employs the EMMA platform for management and analysis of transcriptome data and the IGetDB data warehouse to integrate a variety of heterogeneous external data sources.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Gestão da Informação , Sinorhizobium meliloti/genética , Proteínas de Bactérias/genética , Armazenamento e Recuperação da Informação , Internet , Medicago truncatula , Análise em Microsséries , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...