Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(9): 1930-1949.e31, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37071993

RESUMO

Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.5, they form a multi-layered circuit motif, composed of only embryonic near-projecting-type neurons. By E17.5, this transitions to a second motif involving all three embryonic types, analogous to the three adult layer 5 types. In vivo patch clamp recordings and two-photon calcium imaging of embryonic Rbp4-Cre neurons reveal active somas and neurites, tetrodotoxin-sensitive voltage-gated conductances, and functional glutamatergic synapses, from E14.5 onwards. Embryonic Rbp4-Cre neurons strongly express autism-associated genes and perturbing these genes interferes with the switch between the two motifs. Hence, pyramidal neurons form active, transient, multi-layered pyramidal-to-pyramidal circuits at the inception of neocortex, and studying these circuits could yield insights into the etiology of autism.


Assuntos
Transtorno Autístico , Neocórtex , Células Piramidais , Animais , Feminino , Camundongos , Gravidez , Transtorno Autístico/genética , Transtorno Autístico/patologia , Mutação , Neocórtex/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia
2.
Nucleic Acids Res ; 49(9): 5336-5350, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33905506

RESUMO

DDX3 is an RNA chaperone of the DEAD-box family that regulates translation. Ded1, the yeast ortholog of DDX3, is a global regulator of translation, whereas DDX3 is thought to preferentially affect a subset of mRNAs. However, the set of mRNAs that are regulated by DDX3 are unknown, along with the relationship between DDX3 binding and activity. Here, we use ribosome profiling, RNA-seq, and PAR-CLIP to define the set of mRNAs that are regulated by DDX3 in human cells. We find that while DDX3 binds highly expressed mRNAs, depletion of DDX3 particularly affects the translation of a small subset of the transcriptome. We further find that DDX3 binds a site on helix 16 of the human ribosomal rRNA, placing it immediately adjacent to the mRNA entry channel. Translation changes caused by depleting DDX3 levels or expressing an inactive point mutation are different, consistent with different association of these genetic variant types with disease. Taken together, this work defines the subset of the transcriptome that is responsive to DDX3 inhibition, with relevance for basic biology and disease states where DDX3 is altered.


Assuntos
Regiões 5' não Traduzidas , RNA Helicases DEAD-box/fisiologia , Biossíntese de Proteínas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Mutação , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA Interferente Pequeno
3.
Cell ; 182(6): 1623-1640.e34, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32946783

RESUMO

Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.


Assuntos
Diferenciação Celular/genética , Organoides/citologia , Organoides/metabolismo , Retina/citologia , Retina/metabolismo , Análise de Célula Única/métodos , Sinapses/fisiologia , Transcriptoma/genética , Técnicas de Cultura de Células/métodos , Linhagem Celular , Eletrofisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Predisposição Genética para Doença/genética , Humanos , Hibridização In Situ , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Eletrônica , Família Multigênica , Naftoquinonas , Organoides/efeitos da radiação , Organoides/ultraestrutura , Retina/patologia , Retina/efeitos da radiação
4.
Nat Neurosci ; 22(8): 1345-1356, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285614

RESUMO

Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.


Assuntos
Dependovirus/genética , Marcação de Genes/métodos , Neuroglia/virologia , Neurônios/virologia , Animais , Técnicas de Transferência de Genes , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Retina/virologia
5.
Nat Biotechnol ; 36(1): 81-88, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29251729

RESUMO

Genetic engineering by viral infection of single cells is useful to study complex systems such as the brain. However, available methods for infecting single cells have drawbacks that limit their applications. Here we describe 'virus stamping', in which viruses are reversibly bound to a delivery vehicle-a functionalized glass pipette tip or magnetic nanoparticles in a pipette-that is brought into physical contact with the target cell on a surface or in tissue, using mechanical or magnetic forces. Different single cells in the same tissue can be infected with different viruses and an individual cell can be simultaneously infected with different viruses. We use rabies, lenti, herpes simplex, and adeno-associated viruses to drive expression of fluorescent markers or a calcium indicator in target cells in cell culture, mouse retina, human brain organoid, and the brains of live mice. Virus stamping provides a versatile solution for targeted single-cell infection of diverse cell types, both in vitro and in vivo.


Assuntos
Encéfalo/virologia , Nanopartículas de Magnetita/administração & dosagem , Análise de Célula Única/métodos , Vírus/genética , Animais , Engenharia Genética/tendências , Humanos , Nanopartículas de Magnetita/química , Camundongos , Organoides/metabolismo , Organoides/virologia , Retina/metabolismo , Retina/virologia , Distribuição Tecidual , Viroses/genética , Viroses/metabolismo , Replicação Viral/genética
7.
Nat Commun ; 7: 12594, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558292

RESUMO

Memory formation is a complex cognitive function regulated by coordinated synaptic and nuclear processes in neurons. In mammals, it is controlled by multiple molecular activators and suppressors, including the key signalling regulator, protein phosphatase 1 (PP1). Here, we show that memory control by PP1 involves the miR-183/96/182 cluster and its selective regulation during memory formation. Inhibiting nuclear PP1 in the mouse brain, or training on an object recognition task similarly increases miR-183/96/182 expression in the hippocampus. Mimicking this increase by miR-183/96/182 overexpression enhances object memory, while knocking-down endogenous miR-183/96/182 impairs it. This effect involves the modulation of several plasticity-related genes, with HDAC9 identified as an important functional target. Further, PP1 controls miR-183/96/182 in a transcription-independent manner through the processing of their precursors. These findings provide novel evidence for a role of miRNAs in memory formation and suggest the implication of PP1 in miRNAs processing in the adult brain.


Assuntos
Memória de Longo Prazo , MicroRNAs/genética , Família Multigênica , Proteína Fosfatase 1/metabolismo , Animais , Comportamento Exploratório , Hipocampo/metabolismo , Aprendizagem , Camundongos , MicroRNAs/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Processamento Pós-Transcricional do RNA , Análise e Desempenho de Tarefas , Regulação para Cima/genética
8.
Nat Neurosci ; 19(8): 983-4, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27459403
9.
Neuron ; 89(1): 177-93, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26711119

RESUMO

Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease.


Assuntos
Células Amácrinas/citologia , Proteínas do Citoesqueleto/metabolismo , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Nistagmo Congênito/metabolismo , Vias Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos Transgênicos , Percepção de Movimento/fisiologia , Estimulação Luminosa/métodos , Retina/fisiologia , Células Ganglionares da Retina/citologia , Sinapses/metabolismo
10.
Nat Commun ; 6: 7305, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26041499

RESUMO

Brain regions, such as the cortex and retina, are composed of layers of uniform thickness. The molecular mechanism that controls this uniformity is not well understood. Here we show that during mouse postnatal development the timed expression of Rncr4, a retina-specific long noncoding RNA, regulates the similarly timed processing of pri-miR-183/96/182, which is repressed at an earlier developmental stage by RNA helicase Ddx3x. Shifting the timing of mature miR-183/96/182 accumulation or interfering with Ddx3x expression leads to the disorganization of retinal architecture, with the photoreceptor layer being most affected. We identify Crb1, a component of the adhesion belt between glial and photoreceptor cells, as a link between Rncr4-regulated miRNA metabolism and uniform retina layering. Our results suggest that the precise timing of glia-neuron interaction controlled by noncoding RNAs and Ddx3x is important for the even distribution of cells across layers.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Neuroglia/metabolismo , Neurônios/metabolismo , RNA Helicases/metabolismo , RNA Longo não Codificante/genética , Retina/crescimento & desenvolvimento , Animais , Northern Blotting , Western Blotting , RNA Helicases DEAD-box , Redes Reguladoras de Genes , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , MicroRNAs/metabolismo , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo
11.
Cell ; 161(4): 706-8, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25957678

RESUMO

Cone photoreceptors, responsible for high-resolution and color vision, progressively degenerate following the death of rod photoreceptors in the blinding disease retinitis pigmentosa. Aït-Ali et al. describe a molecular mechanism by which RdCVF, a factor normally released by rods, controls glucose entry into cones, enhancing their survival.


Assuntos
Proteínas do Olho/metabolismo , Glicólise , Tiorredoxinas/metabolismo , Animais , Humanos
12.
Neuron ; 83(3): 586-600, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25002228

RESUMO

The outer segments of cones serve as light detectors for daylight color vision, and their dysfunction leads to human blindness conditions. We show that the cone-specific disruption of DGCR8 in adult mice led to the loss of miRNAs and the loss of outer segments, resulting in photoreceptors with significantly reduced light responses. However, the number of cones remained unchanged. The loss of the outer segments occurred gradually over 1 month, and during this time the genetic signature of cones decreased. Reexpression of the sensory-cell-specific miR-182 and miR-183 prevented outer segment loss. These miRNAs were also necessary and sufficient for the formation of inner segments, connecting cilia and short outer segments, as well as light responses in stem-cell-derived retinal cultures. Our results show that miR-182- and miR-183-regulated pathways are necessary for cone outer segment maintenance in vivo and functional outer segment formation in vitro.


Assuntos
MicroRNAs/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Visão Ocular/genética , Envelhecimento , Animais , Técnicas de Inativação de Genes , Humanos , Luz , Camundongos , Camundongos Transgênicos , Retina/metabolismo
13.
Nucleic Acids Res ; 39(1): 257-68, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20739353

RESUMO

The biogenesis of human microRNAs (miRNAs) includes two RNA cleavage steps in which the activities of the RNases Drosha and Dicer are involved. miRNAs of diverse lengths are generated from different genes, and miRNAs that are heterogeneous in length are produced from a single miRNA gene. We determined the solution structures of many miRNA precursors and analysed the structural basis of miRNA length diversity using a new measure: the weighted average length of diced RNA (WALDI). We found that asymmetrical structural motifs present in precursor hairpins are primarily responsible for the length diversity of miRNAs generated by Dicer. High-resolution northern blots of miRNAs and their precursors revealed that both Dicer and Drosha cleavages of imperfect specificity contributed to the miRNA length heterogeneity. The relevance of these findings to the dynamics of the dicing complex, mRNA regulation by miRNA, RNA interference and miRNA technologies are discussed.


Assuntos
MicroRNAs/química , MicroRNAs/metabolismo , Precursores de RNA/química , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Sequência de Bases , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutagênese , Ribonuclease III/metabolismo
14.
Nat Rev Genet ; 11(9): 597-610, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20661255

RESUMO

MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Estabilidade de RNA , Animais , Regulação da Expressão Gênica , Humanos
15.
Cell ; 141(4): 618-31, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20478254

RESUMO

Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.


Assuntos
MicroRNAs/metabolismo , Neurônios/metabolismo , Animais , Adaptação à Escuridão , Regulação para Baixo , Células-Tronco Embrionárias , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Neurônios Retinianos/metabolismo , Regulação para Cima
16.
Anal Biochem ; 402(1): 40-6, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20302838

RESUMO

Chemical and enzymatic structural probes have been used for decades to obtain rapid and comprehensive information regarding the molecular architecture of various RNAs. Despite their widespread use, the sequence specificity of these RNA structural probing reagents has not yet been thoroughly characterized. In this study, we revisited the properties of commonly used structural probes such as Pb(II) ions, ribonuclease V1, ribonuclease T2, and the S1 and mung bean nucleases by testing them on highly regular triplet repeat sequences representing phosphodiester bonds with every possible combination of 3' and 5' adjacent nucleotides. We show that Pb(II) ions preferentially cleave after pyrimidines and that S1 nuclease possesses a previously overlooked specificity toward phosphodiester bonds following G residues. We also observed that mung bean nuclease shows a preference for cleaving ApN bonds and that RNase V1 mainly recognizes U residues in both single- and double-stranded RNAs. These data are important for accurate interpretation of the results of structure probing experiments and for assignment of the correct structure to individual RNA molecules. The triplet repeat transcript system described here may be considered as a reliable platform for determining the sequence specificity of other reagents used to probe RNA structure.


Assuntos
RNA/química , Análise de Sequência de RNA/métodos , Repetições de Trinucleotídeos , Endorribonucleases/metabolismo , Íons/metabolismo , Chumbo/metabolismo , Proteínas de Plantas/metabolismo , RNA/metabolismo , Ribonucleases/metabolismo , Análise de Sequência , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo
17.
J Biol Chem ; 285(17): 12755-64, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20159983

RESUMO

Tandem repeats of various trinucleotide motifs are present in the human transcriptome, but the functions of these regular sequences, which likely depend on the structures they form, are still poorly understood. To gain new insight into the structural and functional properties of triplet repeats in RNA, we have performed a biochemical structural analysis of the complete set of triplet repeat transcripts, each composed of a single sequence repeated 17 times. We show that these transcripts fall into four structural classes. The repeated CAA, UUG, AAG, CUU, CCU, CCA, and UAA motifs did not form any higher order structure under any analyzed conditions. The CAU, CUA, UUA, AUG, and UAG repeats are ordered according to their increasing tendency to form semistable hairpins. The repeated CGA, CGU, and all CNG motifs form fairly stable hairpins, whereas AGG and UGG repeats fold into stable G-quadruplexes. The triplet repeats that formed the most stable structures were characterized further by biophysical methods. UV-monitored structure melting revealed that CGG and CCG repeats form, respectively, the most and least stable hairpins of all CNG repeats. Circular dichroism spectra showed that the AGG and UGG repeat quadruplexes are formed by parallel RNA strands. Furthermore, we demonstrated that the different susceptibility of various triplet repeat transcripts to serum nucleases can be explained by the sequence and structural features of the tested RNAs. The results of this study provide a comprehensive structural foundation for the functional analysis of triplet repeats in transcripts.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Repetições de Trinucleotídeos , Dicroísmo Circular/métodos , Humanos , RNA/genética , RNA/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo , Transcrição Gênica
18.
Nat Med ; 15(1): 31-3, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19122656

RESUMO

Several microRNAs (miRNAs), including liver-specific miR-122, have been implicated in the control of hepatitis C virus (HCV) RNA replication and its response to interferon (IFN) in human hepatoma cells. Our analysis of liver biopsies from subjects with chronic hepatitis C (CHC) undergoing IFN therapy revealed no correlation of miR-122 expression with viral load and markedly decreased pretreatment miR-122 levels in subjects who had no virological response during later IFN therapy; other investigated miRNAs showed only limited changes. These data have implications for the prospect of targeting miRNAs for CHC therapy.


Assuntos
Hepatite C/tratamento farmacológico , Interferon-alfa/uso terapêutico , MicroRNAs/genética , Antivirais/uso terapêutico , Biomarcadores Farmacológicos/metabolismo , Células Cultivadas , Regulação para Baixo/genética , Farmacorresistência Viral/genética , Hepatite C/genética , Hepatite C/metabolismo , Hepatite C/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , MicroRNAs/metabolismo , Falha de Tratamento , Carga Viral
19.
Mol Cell ; 25(4): 575-86, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17317629

RESUMO

Ribonuclease Dicer functions in cells to excise microRNAs from their precursors and process long double-stranded RNAs into short interfering RNAs. We show that transcripts containing long hairpin structures composed of CNG repeats are another class of Dicer targets. The cellular levels of transcripts from mutant genes involved in triplet repeat expansion diseases such as myotonic dystrophy type 1, Huntington's disease, and spinocerebellar ataxia type 1 are under Dicer control. The Dicer-induced downregulation of the mutant transcript in myotonic dystrophy cells is accompanied by the downregulation of transcripts containing long complementary repeats. Short CUG repeats generated from long repeat hairpins act as siRNAs and use the RNA interference pathway to trigger the downstream silencing effects. We demonstrate that synthetic oligonucleotides composed of repeats are highly specific in the silencing of mutant transcripts containing complementary repeats and may be considered as potential therapeutic agents.


Assuntos
Inativação Gênica , Conformação de Ácido Nucleico , Ribonuclease III/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Sequência de Bases , Regulação para Baixo/genética , Células HeLa , Transtornos Heredodegenerativos do Sistema Nervoso/enzimologia , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Mutação/genética , Nucleotídeos/metabolismo , RNA Complementar/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Especificidade por Substrato , Transfecção
20.
Methods Mol Biol ; 342: 19-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16957364

RESUMO

MicroRNA biogenesis occurs in several steps from their precursors having irregular hairpin structures. The highly variable architecture of these stem-and-loop structures, which have terminal loops of various sizes and diverse structure destabilizing motifs present in their stem sections, may strongly influence the process of microRNA liberation. In order to better understand this process, more details regarding its structural basis are required. A substantial part of this information may be derived from the structure analysis of microRNA precursor using biochemical methods. Here we show how the analysis with the use of various nucleases and metal ions is performed. The presented protocols include the design of DNA template-phage promoter fusions to generate natural precursor ends, and the tests performed to check the sequence and structure homogeneity of the in vitro transcripts prior to probing their structures.


Assuntos
MicroRNAs/química , MicroRNAs/metabolismo , Precursores de RNA/química , Precursores de RNA/metabolismo , Animais , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...