Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4088, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906622

RESUMO

Uranium oxide microparticles ingestion is one of the potential sources of internal radiation doses to the humans at accidental or undesirable releases of radioactive materials. It is important to predict the obtained dose and possible biological effect of these microparticles by studying uranium oxides transformations in case of their ingestion or inhalation. Using a combination of methods, a complex examination of structural changes of uranium oxides in the range from UO2 to U4O9, U3O8 and UO3 as well as before and after exposure of uranium oxides in simulated biological fluids: gastro-intestinal and lung-was carried out. Oxides were thoroughly characterized by Raman and XAFS spectroscopy. It was determined that the duration of expose has more influence on all oxides transformations. The greatest changes occurred in U4O9, that transformed into U4O9-y. UO2.05 and U3O8 structures became more ordered and UO3 did not undergo significant transformation.


Assuntos
Compostos de Urânio , Urânio , Humanos , Urânio/química , Corpo Humano , Óxidos/química
2.
J Synchrotron Radiat ; 29(Pt 2): 303-314, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254292

RESUMO

Understanding the speciation of technogenic uranium in natural systems is crucial for estimating U migration and bioavailability and for developing remediation strategies for contaminated territories. Reference EXAFS data of model laboratory-prepared uranium compounds (`standards') are necessary to analyze U-contaminated samples from nuclear legacy sites. To minimize errors associated with measurements on different synchrotrons, it is important not only to compare data obtained on environmentally contaminated samples with the literature but also with `standards' collected at the same beamline. Before recording the EXAFS spectra, all reference compounds were thoroughly characterized by Raman spectroscopy and powder X-ray diffraction. The U(VI) local molecular environments in the reference compounds, i.e. uranyl oxyhydroxides, phosphates, carbonates and uranates, were examined using XAFS. Based on the EXAFS fitting results obtained, including the nature of the bonding, interatomic distances and coordination numbers, parameters that are typical for a particular U compound were differentiated. Using data for `standards', U speciation in the sample of radioactively contaminated soil was determined to be a mixture of U oxyhydroxide and carbonate phases.


Assuntos
Urânio , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...